Metamath Proof Explorer


Theorem gsumval3lem1

Description: Lemma 1 for gsumval3 . (Contributed by AV, 31-May-2019)

Ref Expression
Hypotheses gsumval3.b B=BaseG
gsumval3.0 0˙=0G
gsumval3.p +˙=+G
gsumval3.z Z=CntzG
gsumval3.g φGMnd
gsumval3.a φAV
gsumval3.f φF:AB
gsumval3.c φranFZranF
gsumval3.m φM
gsumval3.h φH:1M1-1A
gsumval3.n φFsupp0˙ranH
gsumval3.w W=FHsupp0˙
Assertion gsumval3lem1 φW¬AranfIsom<,<1WWHf:1Fsupp0˙1-1 ontoFsupp0˙

Proof

Step Hyp Ref Expression
1 gsumval3.b B=BaseG
2 gsumval3.0 0˙=0G
3 gsumval3.p +˙=+G
4 gsumval3.z Z=CntzG
5 gsumval3.g φGMnd
6 gsumval3.a φAV
7 gsumval3.f φF:AB
8 gsumval3.c φranFZranF
9 gsumval3.m φM
10 gsumval3.h φH:1M1-1A
11 gsumval3.n φFsupp0˙ranH
12 gsumval3.w W=FHsupp0˙
13 10 ad2antrr φW¬AranfIsom<,<1WWH:1M1-1A
14 suppssdm FHsupp0˙domFH
15 12 14 eqsstri WdomFH
16 f1f H:1M1-1AH:1MA
17 10 16 syl φH:1MA
18 fco F:ABH:1MAFH:1MB
19 7 17 18 syl2anc φFH:1MB
20 15 19 fssdm φW1M
21 20 ad2antrr φW¬AranfIsom<,<1WWW1M
22 f1ores H:1M1-1AW1MHW:W1-1 ontoHW
23 13 21 22 syl2anc φW¬AranfIsom<,<1WWHW:W1-1 ontoHW
24 12 imaeq2i HW=HFHsupp0˙
25 7 6 fexd φFV
26 ovex 1MV
27 fex H:1MA1MVHV
28 16 26 27 sylancl H:1M1-1AHV
29 10 28 syl φHV
30 f1fun H:1M1-1AFunH
31 10 30 syl φFunH
32 31 11 jca φFunHFsupp0˙ranH
33 25 29 32 jca31 φFVHVFunHFsupp0˙ranH
34 33 ad2antrr φW¬AranfIsom<,<1WWFVHVFunHFsupp0˙ranH
35 imacosupp FVHVFunHFsupp0˙ranHHFHsupp0˙=Fsupp0˙
36 35 imp FVHVFunHFsupp0˙ranHHFHsupp0˙=Fsupp0˙
37 34 36 syl φW¬AranfIsom<,<1WWHFHsupp0˙=Fsupp0˙
38 24 37 eqtrid φW¬AranfIsom<,<1WWHW=Fsupp0˙
39 38 f1oeq3d φW¬AranfIsom<,<1WWHW:W1-1 ontoHWHW:W1-1 ontoFsupp0˙
40 23 39 mpbid φW¬AranfIsom<,<1WWHW:W1-1 ontoFsupp0˙
41 isof1o fIsom<,<1WWf:1W1-1 ontoW
42 41 ad2antll φW¬AranfIsom<,<1WWf:1W1-1 ontoW
43 f1oco HW:W1-1 ontoFsupp0˙f:1W1-1 ontoWHWf:1W1-1 ontoFsupp0˙
44 40 42 43 syl2anc φW¬AranfIsom<,<1WWHWf:1W1-1 ontoFsupp0˙
45 f1of f:1W1-1 ontoWf:1WW
46 frn f:1WWranfW
47 42 45 46 3syl φW¬AranfIsom<,<1WWranfW
48 cores ranfWHWf=Hf
49 f1oeq1 HWf=HfHWf:1W1-1 ontoFsupp0˙Hf:1W1-1 ontoFsupp0˙
50 47 48 49 3syl φW¬AranfIsom<,<1WWHWf:1W1-1 ontoFsupp0˙Hf:1W1-1 ontoFsupp0˙
51 44 50 mpbid φW¬AranfIsom<,<1WWHf:1W1-1 ontoFsupp0˙
52 fzfi 1MFin
53 ssfi 1MFinW1MWFin
54 52 20 53 sylancr φWFin
55 54 ad2antrr φW¬AranfIsom<,<1WWWFin
56 12 a1i φW¬AranfIsom<,<1WWW=FHsupp0˙
57 56 imaeq2d φW¬AranfIsom<,<1WWHW=HFHsupp0˙
58 52 a1i φ1MFin
59 17 58 fexd φHV
60 25 59 32 jca31 φFVHVFunHFsupp0˙ranH
61 60 ad2antrr φW¬AranfIsom<,<1WWFVHVFunHFsupp0˙ranH
62 61 36 syl φW¬AranfIsom<,<1WWHFHsupp0˙=Fsupp0˙
63 57 62 eqtrd φW¬AranfIsom<,<1WWHW=Fsupp0˙
64 63 f1oeq3d φW¬AranfIsom<,<1WWHW:W1-1 ontoHWHW:W1-1 ontoFsupp0˙
65 23 64 mpbid φW¬AranfIsom<,<1WWHW:W1-1 ontoFsupp0˙
66 55 65 hasheqf1od φW¬AranfIsom<,<1WWW=Fsupp0˙
67 66 oveq2d φW¬AranfIsom<,<1WW1W=1Fsupp0˙
68 67 f1oeq2d φW¬AranfIsom<,<1WWHf:1W1-1 ontoFsupp0˙Hf:1Fsupp0˙1-1 ontoFsupp0˙
69 51 68 mpbid φW¬AranfIsom<,<1WWHf:1Fsupp0˙1-1 ontoFsupp0˙