Description: Lemma 1 for gsumval3 . (Contributed by AV, 31-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumval3.b | |
|
gsumval3.0 | |
||
gsumval3.p | |
||
gsumval3.z | |
||
gsumval3.g | |
||
gsumval3.a | |
||
gsumval3.f | |
||
gsumval3.c | |
||
gsumval3.m | |
||
gsumval3.h | |
||
gsumval3.n | |
||
gsumval3.w | |
||
Assertion | gsumval3lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval3.b | |
|
2 | gsumval3.0 | |
|
3 | gsumval3.p | |
|
4 | gsumval3.z | |
|
5 | gsumval3.g | |
|
6 | gsumval3.a | |
|
7 | gsumval3.f | |
|
8 | gsumval3.c | |
|
9 | gsumval3.m | |
|
10 | gsumval3.h | |
|
11 | gsumval3.n | |
|
12 | gsumval3.w | |
|
13 | 10 | ad2antrr | |
14 | suppssdm | |
|
15 | 12 14 | eqsstri | |
16 | f1f | |
|
17 | 10 16 | syl | |
18 | fco | |
|
19 | 7 17 18 | syl2anc | |
20 | 15 19 | fssdm | |
21 | 20 | ad2antrr | |
22 | f1ores | |
|
23 | 13 21 22 | syl2anc | |
24 | 12 | imaeq2i | |
25 | 7 6 | fexd | |
26 | ovex | |
|
27 | fex | |
|
28 | 16 26 27 | sylancl | |
29 | 10 28 | syl | |
30 | f1fun | |
|
31 | 10 30 | syl | |
32 | 31 11 | jca | |
33 | 25 29 32 | jca31 | |
34 | 33 | ad2antrr | |
35 | imacosupp | |
|
36 | 35 | imp | |
37 | 34 36 | syl | |
38 | 24 37 | eqtrid | |
39 | 38 | f1oeq3d | |
40 | 23 39 | mpbid | |
41 | isof1o | |
|
42 | 41 | ad2antll | |
43 | f1oco | |
|
44 | 40 42 43 | syl2anc | |
45 | f1of | |
|
46 | frn | |
|
47 | 42 45 46 | 3syl | |
48 | cores | |
|
49 | f1oeq1 | |
|
50 | 47 48 49 | 3syl | |
51 | 44 50 | mpbid | |
52 | fzfi | |
|
53 | ssfi | |
|
54 | 52 20 53 | sylancr | |
55 | 54 | ad2antrr | |
56 | 12 | a1i | |
57 | 56 | imaeq2d | |
58 | 52 | a1i | |
59 | 17 58 | fexd | |
60 | 25 59 32 | jca31 | |
61 | 60 | ad2antrr | |
62 | 61 36 | syl | |
63 | 57 62 | eqtrd | |
64 | 63 | f1oeq3d | |
65 | 23 64 | mpbid | |
66 | 55 65 | hasheqf1od | |
67 | 66 | oveq2d | |
68 | 67 | f1oeq2d | |
69 | 51 68 | mpbid | |