| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
|
| 2 |
|
gsumval3.0 |
|
| 3 |
|
gsumval3.p |
|
| 4 |
|
gsumval3.z |
|
| 5 |
|
gsumval3.g |
|
| 6 |
|
gsumval3.a |
|
| 7 |
|
gsumval3.f |
|
| 8 |
|
gsumval3.c |
|
| 9 |
|
gsumval3.m |
|
| 10 |
|
gsumval3.h |
|
| 11 |
|
gsumval3.n |
|
| 12 |
|
gsumval3.w |
|
| 13 |
10
|
ad2antrr |
|
| 14 |
|
suppssdm |
|
| 15 |
12 14
|
eqsstri |
|
| 16 |
|
f1f |
|
| 17 |
10 16
|
syl |
|
| 18 |
|
fco |
|
| 19 |
7 17 18
|
syl2anc |
|
| 20 |
15 19
|
fssdm |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
f1ores |
|
| 23 |
13 21 22
|
syl2anc |
|
| 24 |
12
|
imaeq2i |
|
| 25 |
7 6
|
fexd |
|
| 26 |
|
ovex |
|
| 27 |
|
fex |
|
| 28 |
16 26 27
|
sylancl |
|
| 29 |
10 28
|
syl |
|
| 30 |
|
f1fun |
|
| 31 |
10 30
|
syl |
|
| 32 |
31 11
|
jca |
|
| 33 |
25 29 32
|
jca31 |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
|
imacosupp |
|
| 36 |
35
|
imp |
|
| 37 |
34 36
|
syl |
|
| 38 |
24 37
|
eqtrid |
|
| 39 |
38
|
f1oeq3d |
|
| 40 |
23 39
|
mpbid |
|
| 41 |
|
isof1o |
|
| 42 |
41
|
ad2antll |
|
| 43 |
|
f1oco |
|
| 44 |
40 42 43
|
syl2anc |
|
| 45 |
|
f1of |
|
| 46 |
|
frn |
|
| 47 |
42 45 46
|
3syl |
|
| 48 |
|
cores |
|
| 49 |
|
f1oeq1 |
|
| 50 |
47 48 49
|
3syl |
|
| 51 |
44 50
|
mpbid |
|
| 52 |
|
fzfi |
|
| 53 |
|
ssfi |
|
| 54 |
52 20 53
|
sylancr |
|
| 55 |
54
|
ad2antrr |
|
| 56 |
12
|
a1i |
|
| 57 |
56
|
imaeq2d |
|
| 58 |
52
|
a1i |
|
| 59 |
17 58
|
fexd |
|
| 60 |
25 59 32
|
jca31 |
|
| 61 |
60
|
ad2antrr |
|
| 62 |
61 36
|
syl |
|
| 63 |
57 62
|
eqtrd |
|
| 64 |
63
|
f1oeq3d |
|
| 65 |
23 64
|
mpbid |
|
| 66 |
55 65
|
hasheqf1od |
|
| 67 |
66
|
oveq2d |
|
| 68 |
67
|
f1oeq2d |
|
| 69 |
51 68
|
mpbid |
|