Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumzinv.b | |
|
gsumzinv.0 | |
||
gsumzinv.z | |
||
gsumzinv.i | |
||
gsumzinv.g | |
||
gsumzinv.a | |
||
gsumzinv.f | |
||
gsumzinv.c | |
||
gsumzinv.n | |
||
Assertion | gsumzinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzinv.b | |
|
2 | gsumzinv.0 | |
|
3 | gsumzinv.z | |
|
4 | gsumzinv.i | |
|
5 | gsumzinv.g | |
|
6 | gsumzinv.a | |
|
7 | gsumzinv.f | |
|
8 | gsumzinv.c | |
|
9 | gsumzinv.n | |
|
10 | eqid | |
|
11 | 5 | grpmndd | |
12 | 1 4 | grpinvf | |
13 | 5 12 | syl | |
14 | fco | |
|
15 | 13 7 14 | syl2anc | |
16 | 10 4 | invoppggim | |
17 | gimghm | |
|
18 | ghmmhm | |
|
19 | 5 16 17 18 | 4syl | |
20 | eqid | |
|
21 | 3 20 | cntzmhm2 | |
22 | 19 8 21 | syl2anc | |
23 | rnco2 | |
|
24 | 23 | fveq2i | |
25 | 10 3 | oppgcntz | |
26 | 24 25 | eqtri | |
27 | 22 23 26 | 3sstr4g | |
28 | 2 | fvexi | |
29 | 28 | a1i | |
30 | 1 | fvexi | |
31 | 30 | a1i | |
32 | 2 4 | grpinvid | |
33 | 5 32 | syl | |
34 | 29 7 13 6 31 9 33 | fsuppco2 | |
35 | 1 2 3 10 11 6 15 27 34 | gsumzoppg | |
36 | 10 | oppgmnd | |
37 | 11 36 | syl | |
38 | 1 3 11 37 6 19 7 8 2 9 | gsumzmhm | |
39 | 35 38 | eqtr3d | |