Metamath Proof Explorer


Theorem gsumzunsnd

Description: Append an element to a finite group sum, more general version of gsumunsnd . (Contributed by AV, 7-Oct-2019)

Ref Expression
Hypotheses gsumzunsnd.b B=BaseG
gsumzunsnd.p +˙=+G
gsumzunsnd.z Z=CntzG
gsumzunsnd.f F=kAMX
gsumzunsnd.g φGMnd
gsumzunsnd.a φAFin
gsumzunsnd.c φranFZranF
gsumzunsnd.x φkAXB
gsumzunsnd.m φMV
gsumzunsnd.d φ¬MA
gsumzunsnd.y φYB
gsumzunsnd.s φk=MX=Y
Assertion gsumzunsnd φGF=GkAX+˙Y

Proof

Step Hyp Ref Expression
1 gsumzunsnd.b B=BaseG
2 gsumzunsnd.p +˙=+G
3 gsumzunsnd.z Z=CntzG
4 gsumzunsnd.f F=kAMX
5 gsumzunsnd.g φGMnd
6 gsumzunsnd.a φAFin
7 gsumzunsnd.c φranFZranF
8 gsumzunsnd.x φkAXB
9 gsumzunsnd.m φMV
10 gsumzunsnd.d φ¬MA
11 gsumzunsnd.y φYB
12 gsumzunsnd.s φk=MX=Y
13 eqid 0G=0G
14 snfi MFin
15 unfi AFinMFinAMFin
16 6 14 15 sylancl φAMFin
17 elun kAMkAkM
18 elsni kMk=M
19 18 12 sylan2 φkMX=Y
20 11 adantr φkMYB
21 19 20 eqeltrd φkMXB
22 8 21 jaodan φkAkMXB
23 17 22 sylan2b φkAMXB
24 23 4 fmptd φF:AMB
25 8 expcom kAφXB
26 11 adantr φk=MYB
27 12 26 eqeltrd φk=MXB
28 27 expcom k=MφXB
29 18 28 syl kMφXB
30 25 29 jaoi kAkMφXB
31 17 30 sylbi kAMφXB
32 31 impcom φkAMXB
33 fvexd φ0GV
34 4 16 32 33 fsuppmptdm φfinSupp0GF
35 disjsn AM=¬MA
36 10 35 sylibr φAM=
37 eqidd φAM=AM
38 1 13 2 3 5 16 24 7 34 36 37 gsumzsplit φGF=GFA+˙GFM
39 4 reseq1i FA=kAMXA
40 ssun1 AAM
41 resmpt AAMkAMXA=kAX
42 40 41 mp1i φkAMXA=kAX
43 39 42 eqtrid φFA=kAX
44 43 oveq2d φGFA=GkAX
45 4 reseq1i FM=kAMXM
46 ssun2 MAM
47 resmpt MAMkAMXM=kMX
48 46 47 mp1i φkAMXM=kMX
49 45 48 eqtrid φFM=kMX
50 49 oveq2d φGFM=GkMX
51 44 50 oveq12d φGFA+˙GFM=GkAX+˙GkMX
52 1 5 9 11 12 gsumsnd φGkMX=Y
53 52 oveq2d φGkAX+˙GkMX=GkAX+˙Y
54 38 51 53 3eqtrd φGF=GkAX+˙Y