Description: Append an element to a finite group sum, more general version of gsumunsnd . (Contributed by AV, 7-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumzunsnd.b | |
|
gsumzunsnd.p | |
||
gsumzunsnd.z | |
||
gsumzunsnd.f | |
||
gsumzunsnd.g | |
||
gsumzunsnd.a | |
||
gsumzunsnd.c | |
||
gsumzunsnd.x | |
||
gsumzunsnd.m | |
||
gsumzunsnd.d | |
||
gsumzunsnd.y | |
||
gsumzunsnd.s | |
||
Assertion | gsumzunsnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzunsnd.b | |
|
2 | gsumzunsnd.p | |
|
3 | gsumzunsnd.z | |
|
4 | gsumzunsnd.f | |
|
5 | gsumzunsnd.g | |
|
6 | gsumzunsnd.a | |
|
7 | gsumzunsnd.c | |
|
8 | gsumzunsnd.x | |
|
9 | gsumzunsnd.m | |
|
10 | gsumzunsnd.d | |
|
11 | gsumzunsnd.y | |
|
12 | gsumzunsnd.s | |
|
13 | eqid | |
|
14 | snfi | |
|
15 | unfi | |
|
16 | 6 14 15 | sylancl | |
17 | elun | |
|
18 | elsni | |
|
19 | 18 12 | sylan2 | |
20 | 11 | adantr | |
21 | 19 20 | eqeltrd | |
22 | 8 21 | jaodan | |
23 | 17 22 | sylan2b | |
24 | 23 4 | fmptd | |
25 | 8 | expcom | |
26 | 11 | adantr | |
27 | 12 26 | eqeltrd | |
28 | 27 | expcom | |
29 | 18 28 | syl | |
30 | 25 29 | jaoi | |
31 | 17 30 | sylbi | |
32 | 31 | impcom | |
33 | fvexd | |
|
34 | 4 16 32 33 | fsuppmptdm | |
35 | disjsn | |
|
36 | 10 35 | sylibr | |
37 | eqidd | |
|
38 | 1 13 2 3 5 16 24 7 34 36 37 | gsumzsplit | |
39 | 4 | reseq1i | |
40 | ssun1 | |
|
41 | resmpt | |
|
42 | 40 41 | mp1i | |
43 | 39 42 | eqtrid | |
44 | 43 | oveq2d | |
45 | 4 | reseq1i | |
46 | ssun2 | |
|
47 | resmpt | |
|
48 | 46 47 | mp1i | |
49 | 45 48 | eqtrid | |
50 | 49 | oveq2d | |
51 | 44 50 | oveq12d | |
52 | 1 5 9 11 12 | gsumsnd | |
53 | 52 | oveq2d | |
54 | 38 51 53 | 3eqtrd | |