Metamath Proof Explorer


Theorem hausgraph

Description: The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion hausgraph KHausFJCnKFClsdJ×tK

Proof

Step Hyp Ref Expression
1 f1stres 1stJ×K:J×KJ
2 ffn 1stJ×K:J×KJ1stJ×KFnJ×K
3 1 2 ax-mp 1stJ×KFnJ×K
4 fvco2 1stJ×KFnJ×KaJ×KF1stJ×Ka=F1stJ×Ka
5 3 4 mpan aJ×KF1stJ×Ka=F1stJ×Ka
6 5 adantl KHausFJCnKaJ×KF1stJ×Ka=F1stJ×Ka
7 fvres aJ×K1stJ×Ka=1sta
8 7 fveq2d aJ×KF1stJ×Ka=F1sta
9 8 adantl KHausFJCnKaJ×KF1stJ×Ka=F1sta
10 6 9 eqtrd KHausFJCnKaJ×KF1stJ×Ka=F1sta
11 fvres aJ×K2ndJ×Ka=2nda
12 11 adantl KHausFJCnKaJ×K2ndJ×Ka=2nda
13 10 12 eqeq12d KHausFJCnKaJ×KF1stJ×Ka=2ndJ×KaF1sta=2nda
14 13 rabbidva KHausFJCnKaJ×K|F1stJ×Ka=2ndJ×Ka=aJ×K|F1sta=2nda
15 eqid J=J
16 eqid K=K
17 15 16 cnf FJCnKF:JK
18 17 adantl KHausFJCnKF:JK
19 fco F:JK1stJ×K:J×KJF1stJ×K:J×KK
20 18 1 19 sylancl KHausFJCnKF1stJ×K:J×KK
21 20 ffnd KHausFJCnKF1stJ×KFnJ×K
22 f2ndres 2ndJ×K:J×KK
23 ffn 2ndJ×K:J×KK2ndJ×KFnJ×K
24 22 23 ax-mp 2ndJ×KFnJ×K
25 fndmin F1stJ×KFnJ×K2ndJ×KFnJ×KdomF1stJ×K2ndJ×K=aJ×K|F1stJ×Ka=2ndJ×Ka
26 21 24 25 sylancl KHausFJCnKdomF1stJ×K2ndJ×K=aJ×K|F1stJ×Ka=2ndJ×Ka
27 fgraphxp F:JKF=aJ×K|F1sta=2nda
28 18 27 syl KHausFJCnKF=aJ×K|F1sta=2nda
29 14 26 28 3eqtr4rd KHausFJCnKF=domF1stJ×K2ndJ×K
30 simpl KHausFJCnKKHaus
31 cntop1 FJCnKJTop
32 31 adantl KHausFJCnKJTop
33 15 toptopon JTopJTopOnJ
34 32 33 sylib KHausFJCnKJTopOnJ
35 haustop KHausKTop
36 30 35 syl KHausFJCnKKTop
37 16 toptopon KTopKTopOnK
38 36 37 sylib KHausFJCnKKTopOnK
39 tx1cn JTopOnJKTopOnK1stJ×KJ×tKCnJ
40 34 38 39 syl2anc KHausFJCnK1stJ×KJ×tKCnJ
41 cnco 1stJ×KJ×tKCnJFJCnKF1stJ×KJ×tKCnK
42 40 41 sylancom KHausFJCnKF1stJ×KJ×tKCnK
43 tx2cn JTopOnJKTopOnK2ndJ×KJ×tKCnK
44 34 38 43 syl2anc KHausFJCnK2ndJ×KJ×tKCnK
45 30 42 44 hauseqlcld KHausFJCnKdomF1stJ×K2ndJ×KClsdJ×tK
46 29 45 eqeltrd KHausFJCnKFClsdJ×tK