Description: The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hausgraph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1stres | |
|
2 | ffn | |
|
3 | 1 2 | ax-mp | |
4 | fvco2 | |
|
5 | 3 4 | mpan | |
6 | 5 | adantl | |
7 | fvres | |
|
8 | 7 | fveq2d | |
9 | 8 | adantl | |
10 | 6 9 | eqtrd | |
11 | fvres | |
|
12 | 11 | adantl | |
13 | 10 12 | eqeq12d | |
14 | 13 | rabbidva | |
15 | eqid | |
|
16 | eqid | |
|
17 | 15 16 | cnf | |
18 | 17 | adantl | |
19 | fco | |
|
20 | 18 1 19 | sylancl | |
21 | 20 | ffnd | |
22 | f2ndres | |
|
23 | ffn | |
|
24 | 22 23 | ax-mp | |
25 | fndmin | |
|
26 | 21 24 25 | sylancl | |
27 | fgraphxp | |
|
28 | 18 27 | syl | |
29 | 14 26 28 | 3eqtr4rd | |
30 | simpl | |
|
31 | cntop1 | |
|
32 | 31 | adantl | |
33 | 15 | toptopon | |
34 | 32 33 | sylib | |
35 | haustop | |
|
36 | 30 35 | syl | |
37 | 16 | toptopon | |
38 | 36 37 | sylib | |
39 | tx1cn | |
|
40 | 34 38 39 | syl2anc | |
41 | cnco | |
|
42 | 40 41 | sylancom | |
43 | tx2cn | |
|
44 | 34 38 43 | syl2anc | |
45 | 30 42 44 | hauseqlcld | |
46 | 29 45 | eqeltrd | |