Metamath Proof Explorer


Theorem hbtlem7

Description: Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypotheses hbtlem.p P=Poly1R
hbtlem.u U=LIdealP
hbtlem.s S=ldgIdlSeqR
hbtlem7.t T=LIdealR
Assertion hbtlem7 RRingIUSI:0T

Proof

Step Hyp Ref Expression
1 hbtlem.p P=Poly1R
2 hbtlem.u U=LIdealP
3 hbtlem.s S=ldgIdlSeqR
4 hbtlem7.t T=LIdealR
5 simpr deg1Rjxy=coe1jxy=coe1jx
6 5 reximi jIdeg1Rjxy=coe1jxjIy=coe1jx
7 6 ss2abi y|jIdeg1Rjxy=coe1jxy|jIy=coe1jx
8 abrexexg IUy|jIy=coe1jxV
9 ssexg y|jIdeg1Rjxy=coe1jxy|jIy=coe1jxy|jIy=coe1jxVy|jIdeg1Rjxy=coe1jxV
10 7 8 9 sylancr IUy|jIdeg1Rjxy=coe1jxV
11 10 ralrimivw IUx0y|jIdeg1Rjxy=coe1jxV
12 11 adantl RRingIUx0y|jIdeg1Rjxy=coe1jxV
13 eqid x0y|jIdeg1Rjxy=coe1jx=x0y|jIdeg1Rjxy=coe1jx
14 13 fnmpt x0y|jIdeg1Rjxy=coe1jxVx0y|jIdeg1Rjxy=coe1jxFn0
15 12 14 syl RRingIUx0y|jIdeg1Rjxy=coe1jxFn0
16 elex RRingRV
17 fveq2 r=RPoly1r=Poly1R
18 17 1 eqtr4di r=RPoly1r=P
19 18 fveq2d r=RLIdealPoly1r=LIdealP
20 19 2 eqtr4di r=RLIdealPoly1r=U
21 fveq2 r=Rdeg1r=deg1R
22 21 fveq1d r=Rdeg1rj=deg1Rj
23 22 breq1d r=Rdeg1rjxdeg1Rjx
24 23 anbi1d r=Rdeg1rjxy=coe1jxdeg1Rjxy=coe1jx
25 24 rexbidv r=Rjideg1rjxy=coe1jxjideg1Rjxy=coe1jx
26 25 abbidv r=Ry|jideg1rjxy=coe1jx=y|jideg1Rjxy=coe1jx
27 26 mpteq2dv r=Rx0y|jideg1rjxy=coe1jx=x0y|jideg1Rjxy=coe1jx
28 20 27 mpteq12dv r=RiLIdealPoly1rx0y|jideg1rjxy=coe1jx=iUx0y|jideg1Rjxy=coe1jx
29 df-ldgis ldgIdlSeq=rViLIdealPoly1rx0y|jideg1rjxy=coe1jx
30 28 29 2 mptfvmpt RVldgIdlSeqR=iUx0y|jideg1Rjxy=coe1jx
31 16 30 syl RRingldgIdlSeqR=iUx0y|jideg1Rjxy=coe1jx
32 3 31 eqtrid RRingS=iUx0y|jideg1Rjxy=coe1jx
33 32 fveq1d RRingSI=iUx0y|jideg1Rjxy=coe1jxI
34 rexeq i=Ijideg1Rjxy=coe1jxjIdeg1Rjxy=coe1jx
35 34 abbidv i=Iy|jideg1Rjxy=coe1jx=y|jIdeg1Rjxy=coe1jx
36 35 mpteq2dv i=Ix0y|jideg1Rjxy=coe1jx=x0y|jIdeg1Rjxy=coe1jx
37 eqid iUx0y|jideg1Rjxy=coe1jx=iUx0y|jideg1Rjxy=coe1jx
38 nn0ex 0V
39 38 mptex x0y|jIdeg1Rjxy=coe1jxV
40 36 37 39 fvmpt IUiUx0y|jideg1Rjxy=coe1jxI=x0y|jIdeg1Rjxy=coe1jx
41 33 40 sylan9eq RRingIUSI=x0y|jIdeg1Rjxy=coe1jx
42 41 fneq1d RRingIUSIFn0x0y|jIdeg1Rjxy=coe1jxFn0
43 15 42 mpbird RRingIUSIFn0
44 1 2 3 4 hbtlem2 RRingIUx0SIxT
45 44 3expa RRingIUx0SIxT
46 45 ralrimiva RRingIUx0SIxT
47 ffnfv SI:0TSIFn0x0SIxT
48 43 46 47 sylanbrc RRingIUSI:0T