Metamath Proof Explorer


Theorem hbtlem7

Description: Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypotheses hbtlem.p P = Poly 1 R
hbtlem.u U = LIdeal P
hbtlem.s S = ldgIdlSeq R
hbtlem7.t T = LIdeal R
Assertion hbtlem7 R Ring I U S I : 0 T

Proof

Step Hyp Ref Expression
1 hbtlem.p P = Poly 1 R
2 hbtlem.u U = LIdeal P
3 hbtlem.s S = ldgIdlSeq R
4 hbtlem7.t T = LIdeal R
5 simpr deg 1 R j x y = coe 1 j x y = coe 1 j x
6 5 reximi j I deg 1 R j x y = coe 1 j x j I y = coe 1 j x
7 6 ss2abi y | j I deg 1 R j x y = coe 1 j x y | j I y = coe 1 j x
8 abrexexg I U y | j I y = coe 1 j x V
9 ssexg y | j I deg 1 R j x y = coe 1 j x y | j I y = coe 1 j x y | j I y = coe 1 j x V y | j I deg 1 R j x y = coe 1 j x V
10 7 8 9 sylancr I U y | j I deg 1 R j x y = coe 1 j x V
11 10 ralrimivw I U x 0 y | j I deg 1 R j x y = coe 1 j x V
12 11 adantl R Ring I U x 0 y | j I deg 1 R j x y = coe 1 j x V
13 eqid x 0 y | j I deg 1 R j x y = coe 1 j x = x 0 y | j I deg 1 R j x y = coe 1 j x
14 13 fnmpt x 0 y | j I deg 1 R j x y = coe 1 j x V x 0 y | j I deg 1 R j x y = coe 1 j x Fn 0
15 12 14 syl R Ring I U x 0 y | j I deg 1 R j x y = coe 1 j x Fn 0
16 elex R Ring R V
17 fveq2 r = R Poly 1 r = Poly 1 R
18 17 1 eqtr4di r = R Poly 1 r = P
19 18 fveq2d r = R LIdeal Poly 1 r = LIdeal P
20 19 2 eqtr4di r = R LIdeal Poly 1 r = U
21 fveq2 r = R deg 1 r = deg 1 R
22 21 fveq1d r = R deg 1 r j = deg 1 R j
23 22 breq1d r = R deg 1 r j x deg 1 R j x
24 23 anbi1d r = R deg 1 r j x y = coe 1 j x deg 1 R j x y = coe 1 j x
25 24 rexbidv r = R j i deg 1 r j x y = coe 1 j x j i deg 1 R j x y = coe 1 j x
26 25 abbidv r = R y | j i deg 1 r j x y = coe 1 j x = y | j i deg 1 R j x y = coe 1 j x
27 26 mpteq2dv r = R x 0 y | j i deg 1 r j x y = coe 1 j x = x 0 y | j i deg 1 R j x y = coe 1 j x
28 20 27 mpteq12dv r = R i LIdeal Poly 1 r x 0 y | j i deg 1 r j x y = coe 1 j x = i U x 0 y | j i deg 1 R j x y = coe 1 j x
29 df-ldgis ldgIdlSeq = r V i LIdeal Poly 1 r x 0 y | j i deg 1 r j x y = coe 1 j x
30 28 29 2 mptfvmpt R V ldgIdlSeq R = i U x 0 y | j i deg 1 R j x y = coe 1 j x
31 16 30 syl R Ring ldgIdlSeq R = i U x 0 y | j i deg 1 R j x y = coe 1 j x
32 3 31 eqtrid R Ring S = i U x 0 y | j i deg 1 R j x y = coe 1 j x
33 32 fveq1d R Ring S I = i U x 0 y | j i deg 1 R j x y = coe 1 j x I
34 rexeq i = I j i deg 1 R j x y = coe 1 j x j I deg 1 R j x y = coe 1 j x
35 34 abbidv i = I y | j i deg 1 R j x y = coe 1 j x = y | j I deg 1 R j x y = coe 1 j x
36 35 mpteq2dv i = I x 0 y | j i deg 1 R j x y = coe 1 j x = x 0 y | j I deg 1 R j x y = coe 1 j x
37 eqid i U x 0 y | j i deg 1 R j x y = coe 1 j x = i U x 0 y | j i deg 1 R j x y = coe 1 j x
38 nn0ex 0 V
39 38 mptex x 0 y | j I deg 1 R j x y = coe 1 j x V
40 36 37 39 fvmpt I U i U x 0 y | j i deg 1 R j x y = coe 1 j x I = x 0 y | j I deg 1 R j x y = coe 1 j x
41 33 40 sylan9eq R Ring I U S I = x 0 y | j I deg 1 R j x y = coe 1 j x
42 41 fneq1d R Ring I U S I Fn 0 x 0 y | j I deg 1 R j x y = coe 1 j x Fn 0
43 15 42 mpbird R Ring I U S I Fn 0
44 1 2 3 4 hbtlem2 R Ring I U x 0 S I x T
45 44 3expa R Ring I U x 0 S I x T
46 45 ralrimiva R Ring I U x 0 S I x T
47 ffnfv S I : 0 T S I Fn 0 x 0 S I x T
48 43 46 47 sylanbrc R Ring I U S I : 0 T