| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hbtlem.p |
|
| 2 |
|
hbtlem.u |
|
| 3 |
|
hbtlem.s |
|
| 4 |
|
hbtlem2.t |
|
| 5 |
|
eqid |
|
| 6 |
1 2 3 5
|
hbtlem1 |
|
| 7 |
|
eqid |
|
| 8 |
7 2
|
lidlss |
|
| 9 |
8
|
3ad2ant2 |
|
| 10 |
9
|
sselda |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
11 7 1 12
|
coe1f |
|
| 14 |
10 13
|
syl |
|
| 15 |
|
simpl3 |
|
| 16 |
14 15
|
ffvelcdmd |
|
| 17 |
|
eleq1a |
|
| 18 |
16 17
|
syl |
|
| 19 |
18
|
adantld |
|
| 20 |
19
|
rexlimdva |
|
| 21 |
20
|
abssdv |
|
| 22 |
1
|
ply1ring |
|
| 23 |
22
|
3ad2ant1 |
|
| 24 |
|
simp2 |
|
| 25 |
|
eqid |
|
| 26 |
2 25
|
lidl0cl |
|
| 27 |
23 24 26
|
syl2anc |
|
| 28 |
5 1 25
|
deg1z |
|
| 29 |
28
|
3ad2ant1 |
|
| 30 |
|
nn0ssre |
|
| 31 |
|
ressxr |
|
| 32 |
30 31
|
sstri |
|
| 33 |
|
simp3 |
|
| 34 |
32 33
|
sselid |
|
| 35 |
|
mnfle |
|
| 36 |
34 35
|
syl |
|
| 37 |
29 36
|
eqbrtrd |
|
| 38 |
|
eqid |
|
| 39 |
1 25 38
|
coe1z |
|
| 40 |
39
|
3ad2ant1 |
|
| 41 |
40
|
fveq1d |
|
| 42 |
|
fvex |
|
| 43 |
42
|
fvconst2 |
|
| 44 |
43
|
3ad2ant3 |
|
| 45 |
41 44
|
eqtr2d |
|
| 46 |
|
fveq2 |
|
| 47 |
46
|
breq1d |
|
| 48 |
|
fveq2 |
|
| 49 |
48
|
fveq1d |
|
| 50 |
49
|
eqeq2d |
|
| 51 |
47 50
|
anbi12d |
|
| 52 |
51
|
rspcev |
|
| 53 |
27 37 45 52
|
syl12anc |
|
| 54 |
|
eqeq1 |
|
| 55 |
54
|
anbi2d |
|
| 56 |
55
|
rexbidv |
|
| 57 |
42 56
|
elab |
|
| 58 |
53 57
|
sylibr |
|
| 59 |
58
|
ne0d |
|
| 60 |
23
|
adantr |
|
| 61 |
|
simpl2 |
|
| 62 |
|
eqid |
|
| 63 |
1 62 12 7
|
ply1sclf |
|
| 64 |
63
|
3ad2ant1 |
|
| 65 |
64
|
adantr |
|
| 66 |
|
simprl |
|
| 67 |
65 66
|
ffvelcdmd |
|
| 68 |
|
simprll |
|
| 69 |
68
|
adantl |
|
| 70 |
|
eqid |
|
| 71 |
2 7 70
|
lidlmcl |
|
| 72 |
60 61 67 69 71
|
syl22anc |
|
| 73 |
|
simprrl |
|
| 74 |
73
|
adantl |
|
| 75 |
|
eqid |
|
| 76 |
2 75
|
lidlacl |
|
| 77 |
60 61 72 74 76
|
syl22anc |
|
| 78 |
|
simpl1 |
|
| 79 |
9
|
adantr |
|
| 80 |
79 69
|
sseldd |
|
| 81 |
7 70
|
ringcl |
|
| 82 |
60 67 80 81
|
syl3anc |
|
| 83 |
79 74
|
sseldd |
|
| 84 |
|
simpl3 |
|
| 85 |
32 84
|
sselid |
|
| 86 |
5 1 7
|
deg1xrcl |
|
| 87 |
82 86
|
syl |
|
| 88 |
5 1 7
|
deg1xrcl |
|
| 89 |
80 88
|
syl |
|
| 90 |
5 1 12 7 70 62
|
deg1mul3le |
|
| 91 |
78 66 80 90
|
syl3anc |
|
| 92 |
|
simprlr |
|
| 93 |
92
|
adantl |
|
| 94 |
87 89 85 91 93
|
xrletrd |
|
| 95 |
|
simprrr |
|
| 96 |
95
|
adantl |
|
| 97 |
1 5 78 7 75 82 83 85 94 96
|
deg1addle2 |
|
| 98 |
|
eqid |
|
| 99 |
1 7 75 98
|
coe1addfv |
|
| 100 |
78 82 83 84 99
|
syl31anc |
|
| 101 |
|
eqid |
|
| 102 |
1 7 12 62 70 101
|
coe1sclmulfv |
|
| 103 |
78 66 80 84 102
|
syl121anc |
|
| 104 |
103
|
oveq1d |
|
| 105 |
100 104
|
eqtr2d |
|
| 106 |
|
fveq2 |
|
| 107 |
106
|
breq1d |
|
| 108 |
|
fveq2 |
|
| 109 |
108
|
fveq1d |
|
| 110 |
109
|
eqeq2d |
|
| 111 |
107 110
|
anbi12d |
|
| 112 |
111
|
rspcev |
|
| 113 |
77 97 105 112
|
syl12anc |
|
| 114 |
|
ovex |
|
| 115 |
|
eqeq1 |
|
| 116 |
115
|
anbi2d |
|
| 117 |
116
|
rexbidv |
|
| 118 |
114 117
|
elab |
|
| 119 |
113 118
|
sylibr |
|
| 120 |
119
|
exp45 |
|
| 121 |
120
|
imp |
|
| 122 |
121
|
exp5c |
|
| 123 |
122
|
imp |
|
| 124 |
123
|
imp41 |
|
| 125 |
|
oveq2 |
|
| 126 |
125
|
eleq1d |
|
| 127 |
124 126
|
syl5ibrcom |
|
| 128 |
127
|
expimpd |
|
| 129 |
128
|
rexlimdva |
|
| 130 |
129
|
alrimiv |
|
| 131 |
|
eqeq1 |
|
| 132 |
131
|
anbi2d |
|
| 133 |
132
|
rexbidv |
|
| 134 |
|
fveq2 |
|
| 135 |
134
|
breq1d |
|
| 136 |
|
fveq2 |
|
| 137 |
136
|
fveq1d |
|
| 138 |
137
|
eqeq2d |
|
| 139 |
135 138
|
anbi12d |
|
| 140 |
139
|
cbvrexvw |
|
| 141 |
133 140
|
bitrdi |
|
| 142 |
141
|
ralab |
|
| 143 |
130 142
|
sylibr |
|
| 144 |
|
oveq2 |
|
| 145 |
144
|
oveq1d |
|
| 146 |
145
|
eleq1d |
|
| 147 |
146
|
ralbidv |
|
| 148 |
143 147
|
syl5ibrcom |
|
| 149 |
148
|
expimpd |
|
| 150 |
149
|
rexlimdva |
|
| 151 |
150
|
alrimiv |
|
| 152 |
|
eqeq1 |
|
| 153 |
152
|
anbi2d |
|
| 154 |
153
|
rexbidv |
|
| 155 |
|
fveq2 |
|
| 156 |
155
|
breq1d |
|
| 157 |
|
fveq2 |
|
| 158 |
157
|
fveq1d |
|
| 159 |
158
|
eqeq2d |
|
| 160 |
156 159
|
anbi12d |
|
| 161 |
160
|
cbvrexvw |
|
| 162 |
154 161
|
bitrdi |
|
| 163 |
162
|
ralab |
|
| 164 |
151 163
|
sylibr |
|
| 165 |
164
|
ralrimiva |
|
| 166 |
4 12 98 101
|
islidl |
|
| 167 |
21 59 165 166
|
syl3anbrc |
|
| 168 |
6 167
|
eqeltrd |
|