Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Hilbert's Basis Theorem
hbtlem2
Next ⟩
hbtlem7
Metamath Proof Explorer
Ascii
Unicode
Theorem
hbtlem2
Description:
Leading coefficient ideals are ideals.
(Contributed by
Stefan O'Rear
, 1-Apr-2015)
Ref
Expression
Hypotheses
hbtlem.p
⊢
P
=
Poly
1
R
hbtlem.u
⊢
U
=
LIdeal
P
hbtlem.s
⊢
S
=
ldgIdlSeq
R
hbtlem2.t
⊢
T
=
LIdeal
R
Assertion
hbtlem2
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
S
I
X
∈
T
Proof
Step
Hyp
Ref
Expression
1
hbtlem.p
⊢
P
=
Poly
1
R
2
hbtlem.u
⊢
U
=
LIdeal
P
3
hbtlem.s
⊢
S
=
ldgIdlSeq
R
4
hbtlem2.t
⊢
T
=
LIdeal
R
5
eqid
⊢
deg
1
R
=
deg
1
R
6
1
2
3
5
hbtlem1
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
S
I
X
=
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
7
eqid
⊢
Base
P
=
Base
P
8
7
2
lidlss
⊢
I
∈
U
→
I
⊆
Base
P
9
8
3ad2ant2
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
I
⊆
Base
P
10
9
sselda
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
b
∈
I
→
b
∈
Base
P
11
eqid
⊢
coe
1
b
=
coe
1
b
12
eqid
⊢
Base
R
=
Base
R
13
11
7
1
12
coe1f
⊢
b
∈
Base
P
→
coe
1
b
:
ℕ
0
⟶
Base
R
14
10
13
syl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
b
∈
I
→
coe
1
b
:
ℕ
0
⟶
Base
R
15
simpl3
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
b
∈
I
→
X
∈
ℕ
0
16
14
15
ffvelcdmd
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
b
∈
I
→
coe
1
b
X
∈
Base
R
17
eleq1a
⊢
coe
1
b
X
∈
Base
R
→
a
=
coe
1
b
X
→
a
∈
Base
R
18
16
17
syl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
b
∈
I
→
a
=
coe
1
b
X
→
a
∈
Base
R
19
18
adantld
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
b
∈
I
→
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
→
a
∈
Base
R
20
19
rexlimdva
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
→
a
∈
Base
R
21
20
abssdv
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
⊆
Base
R
22
1
ply1ring
⊢
R
∈
Ring
→
P
∈
Ring
23
22
3ad2ant1
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
P
∈
Ring
24
simp2
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
I
∈
U
25
eqid
⊢
0
P
=
0
P
26
2
25
lidl0cl
⊢
P
∈
Ring
∧
I
∈
U
→
0
P
∈
I
27
23
24
26
syl2anc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
0
P
∈
I
28
5
1
25
deg1z
⊢
R
∈
Ring
→
deg
1
R
0
P
=
−∞
29
28
3ad2ant1
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
deg
1
R
0
P
=
−∞
30
nn0ssre
⊢
ℕ
0
⊆
ℝ
31
ressxr
⊢
ℝ
⊆
ℝ
*
32
30
31
sstri
⊢
ℕ
0
⊆
ℝ
*
33
simp3
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
X
∈
ℕ
0
34
32
33
sselid
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
X
∈
ℝ
*
35
mnfle
⊢
X
∈
ℝ
*
→
−∞
≤
X
36
34
35
syl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
−∞
≤
X
37
29
36
eqbrtrd
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
deg
1
R
0
P
≤
X
38
eqid
⊢
0
R
=
0
R
39
1
25
38
coe1z
⊢
R
∈
Ring
→
coe
1
0
P
=
ℕ
0
×
0
R
40
39
3ad2ant1
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
coe
1
0
P
=
ℕ
0
×
0
R
41
40
fveq1d
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
coe
1
0
P
X
=
ℕ
0
×
0
R
X
42
fvex
⊢
0
R
∈
V
43
42
fvconst2
⊢
X
∈
ℕ
0
→
ℕ
0
×
0
R
X
=
0
R
44
43
3ad2ant3
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
ℕ
0
×
0
R
X
=
0
R
45
41
44
eqtr2d
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
0
R
=
coe
1
0
P
X
46
fveq2
⊢
b
=
0
P
→
deg
1
R
b
=
deg
1
R
0
P
47
46
breq1d
⊢
b
=
0
P
→
deg
1
R
b
≤
X
↔
deg
1
R
0
P
≤
X
48
fveq2
⊢
b
=
0
P
→
coe
1
b
=
coe
1
0
P
49
48
fveq1d
⊢
b
=
0
P
→
coe
1
b
X
=
coe
1
0
P
X
50
49
eqeq2d
⊢
b
=
0
P
→
0
R
=
coe
1
b
X
↔
0
R
=
coe
1
0
P
X
51
47
50
anbi12d
⊢
b
=
0
P
→
deg
1
R
b
≤
X
∧
0
R
=
coe
1
b
X
↔
deg
1
R
0
P
≤
X
∧
0
R
=
coe
1
0
P
X
52
51
rspcev
⊢
0
P
∈
I
∧
deg
1
R
0
P
≤
X
∧
0
R
=
coe
1
0
P
X
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
0
R
=
coe
1
b
X
53
27
37
45
52
syl12anc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
0
R
=
coe
1
b
X
54
eqeq1
⊢
a
=
0
R
→
a
=
coe
1
b
X
↔
0
R
=
coe
1
b
X
55
54
anbi2d
⊢
a
=
0
R
→
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
deg
1
R
b
≤
X
∧
0
R
=
coe
1
b
X
56
55
rexbidv
⊢
a
=
0
R
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∃
b
∈
I
deg
1
R
b
≤
X
∧
0
R
=
coe
1
b
X
57
42
56
elab
⊢
0
R
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∃
b
∈
I
deg
1
R
b
≤
X
∧
0
R
=
coe
1
b
X
58
53
57
sylibr
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
0
R
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
59
58
ne0d
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
≠
∅
60
23
adantr
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
P
∈
Ring
61
simpl2
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
I
∈
U
62
eqid
⊢
algSc
P
=
algSc
P
63
1
62
12
7
ply1sclf
⊢
R
∈
Ring
→
algSc
P
:
Base
R
⟶
Base
P
64
63
3ad2ant1
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
algSc
P
:
Base
R
⟶
Base
P
65
64
adantr
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
algSc
P
:
Base
R
⟶
Base
P
66
simprl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
c
∈
Base
R
67
65
66
ffvelcdmd
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
algSc
P
c
∈
Base
P
68
simprll
⊢
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
f
∈
I
69
68
adantl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
f
∈
I
70
eqid
⊢
⋅
P
=
⋅
P
71
2
7
70
lidlmcl
⊢
P
∈
Ring
∧
I
∈
U
∧
algSc
P
c
∈
Base
P
∧
f
∈
I
→
algSc
P
c
⋅
P
f
∈
I
72
60
61
67
69
71
syl22anc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
algSc
P
c
⋅
P
f
∈
I
73
simprrl
⊢
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
g
∈
I
74
73
adantl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
g
∈
I
75
eqid
⊢
+
P
=
+
P
76
2
75
lidlacl
⊢
P
∈
Ring
∧
I
∈
U
∧
algSc
P
c
⋅
P
f
∈
I
∧
g
∈
I
→
algSc
P
c
⋅
P
f
+
P
g
∈
I
77
60
61
72
74
76
syl22anc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
algSc
P
c
⋅
P
f
+
P
g
∈
I
78
simpl1
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
R
∈
Ring
79
9
adantr
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
I
⊆
Base
P
80
79
69
sseldd
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
f
∈
Base
P
81
7
70
ringcl
⊢
P
∈
Ring
∧
algSc
P
c
∈
Base
P
∧
f
∈
Base
P
→
algSc
P
c
⋅
P
f
∈
Base
P
82
60
67
80
81
syl3anc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
algSc
P
c
⋅
P
f
∈
Base
P
83
79
74
sseldd
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
g
∈
Base
P
84
simpl3
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
X
∈
ℕ
0
85
32
84
sselid
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
X
∈
ℝ
*
86
5
1
7
deg1xrcl
⊢
algSc
P
c
⋅
P
f
∈
Base
P
→
deg
1
R
algSc
P
c
⋅
P
f
∈
ℝ
*
87
82
86
syl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
deg
1
R
algSc
P
c
⋅
P
f
∈
ℝ
*
88
5
1
7
deg1xrcl
⊢
f
∈
Base
P
→
deg
1
R
f
∈
ℝ
*
89
80
88
syl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
deg
1
R
f
∈
ℝ
*
90
5
1
12
7
70
62
deg1mul3le
⊢
R
∈
Ring
∧
c
∈
Base
R
∧
f
∈
Base
P
→
deg
1
R
algSc
P
c
⋅
P
f
≤
deg
1
R
f
91
78
66
80
90
syl3anc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
deg
1
R
algSc
P
c
⋅
P
f
≤
deg
1
R
f
92
simprlr
⊢
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
deg
1
R
f
≤
X
93
92
adantl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
deg
1
R
f
≤
X
94
87
89
85
91
93
xrletrd
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
deg
1
R
algSc
P
c
⋅
P
f
≤
X
95
simprrr
⊢
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
deg
1
R
g
≤
X
96
95
adantl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
deg
1
R
g
≤
X
97
1
5
78
7
75
82
83
85
94
96
deg1addle2
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
deg
1
R
algSc
P
c
⋅
P
f
+
P
g
≤
X
98
eqid
⊢
+
R
=
+
R
99
1
7
75
98
coe1addfv
⊢
R
∈
Ring
∧
algSc
P
c
⋅
P
f
∈
Base
P
∧
g
∈
Base
P
∧
X
∈
ℕ
0
→
coe
1
algSc
P
c
⋅
P
f
+
P
g
X
=
coe
1
algSc
P
c
⋅
P
f
X
+
R
coe
1
g
X
100
78
82
83
84
99
syl31anc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
coe
1
algSc
P
c
⋅
P
f
+
P
g
X
=
coe
1
algSc
P
c
⋅
P
f
X
+
R
coe
1
g
X
101
eqid
⊢
⋅
R
=
⋅
R
102
1
7
12
62
70
101
coe1sclmulfv
⊢
R
∈
Ring
∧
c
∈
Base
R
∧
f
∈
Base
P
∧
X
∈
ℕ
0
→
coe
1
algSc
P
c
⋅
P
f
X
=
c
⋅
R
coe
1
f
X
103
78
66
80
84
102
syl121anc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
coe
1
algSc
P
c
⋅
P
f
X
=
c
⋅
R
coe
1
f
X
104
103
oveq1d
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
coe
1
algSc
P
c
⋅
P
f
X
+
R
coe
1
g
X
=
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
105
100
104
eqtr2d
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
algSc
P
c
⋅
P
f
+
P
g
X
106
fveq2
⊢
b
=
algSc
P
c
⋅
P
f
+
P
g
→
deg
1
R
b
=
deg
1
R
algSc
P
c
⋅
P
f
+
P
g
107
106
breq1d
⊢
b
=
algSc
P
c
⋅
P
f
+
P
g
→
deg
1
R
b
≤
X
↔
deg
1
R
algSc
P
c
⋅
P
f
+
P
g
≤
X
108
fveq2
⊢
b
=
algSc
P
c
⋅
P
f
+
P
g
→
coe
1
b
=
coe
1
algSc
P
c
⋅
P
f
+
P
g
109
108
fveq1d
⊢
b
=
algSc
P
c
⋅
P
f
+
P
g
→
coe
1
b
X
=
coe
1
algSc
P
c
⋅
P
f
+
P
g
X
110
109
eqeq2d
⊢
b
=
algSc
P
c
⋅
P
f
+
P
g
→
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
b
X
↔
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
algSc
P
c
⋅
P
f
+
P
g
X
111
107
110
anbi12d
⊢
b
=
algSc
P
c
⋅
P
f
+
P
g
→
deg
1
R
b
≤
X
∧
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
b
X
↔
deg
1
R
algSc
P
c
⋅
P
f
+
P
g
≤
X
∧
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
algSc
P
c
⋅
P
f
+
P
g
X
112
111
rspcev
⊢
algSc
P
c
⋅
P
f
+
P
g
∈
I
∧
deg
1
R
algSc
P
c
⋅
P
f
+
P
g
≤
X
∧
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
algSc
P
c
⋅
P
f
+
P
g
X
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
b
X
113
77
97
105
112
syl12anc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
b
X
114
ovex
⊢
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
∈
V
115
eqeq1
⊢
a
=
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
→
a
=
coe
1
b
X
↔
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
b
X
116
115
anbi2d
⊢
a
=
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
→
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
deg
1
R
b
≤
X
∧
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
b
X
117
116
rexbidv
⊢
a
=
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∃
b
∈
I
deg
1
R
b
≤
X
∧
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
b
X
118
114
117
elab
⊢
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∃
b
∈
I
deg
1
R
b
≤
X
∧
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
=
coe
1
b
X
119
113
118
sylibr
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
120
119
exp45
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
c
∈
Base
R
→
f
∈
I
∧
deg
1
R
f
≤
X
→
g
∈
I
∧
deg
1
R
g
≤
X
→
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
121
120
imp
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
→
f
∈
I
∧
deg
1
R
f
≤
X
→
g
∈
I
∧
deg
1
R
g
≤
X
→
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
122
121
exp5c
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
→
f
∈
I
→
deg
1
R
f
≤
X
→
g
∈
I
→
deg
1
R
g
≤
X
→
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
123
122
imp
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
→
deg
1
R
f
≤
X
→
g
∈
I
→
deg
1
R
g
≤
X
→
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
124
123
imp41
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
125
oveq2
⊢
e
=
coe
1
g
X
→
c
⋅
R
coe
1
f
X
+
R
e
=
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
126
125
eleq1d
⊢
e
=
coe
1
g
X
→
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
c
⋅
R
coe
1
f
X
+
R
coe
1
g
X
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
127
124
126
syl5ibrcom
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
∧
deg
1
R
g
≤
X
→
e
=
coe
1
g
X
→
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
128
127
expimpd
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
∧
g
∈
I
→
deg
1
R
g
≤
X
∧
e
=
coe
1
g
X
→
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
129
128
rexlimdva
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
→
∃
g
∈
I
deg
1
R
g
≤
X
∧
e
=
coe
1
g
X
→
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
130
129
alrimiv
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
→
∀
e
∃
g
∈
I
deg
1
R
g
≤
X
∧
e
=
coe
1
g
X
→
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
131
eqeq1
⊢
a
=
e
→
a
=
coe
1
b
X
↔
e
=
coe
1
b
X
132
131
anbi2d
⊢
a
=
e
→
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
deg
1
R
b
≤
X
∧
e
=
coe
1
b
X
133
132
rexbidv
⊢
a
=
e
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∃
b
∈
I
deg
1
R
b
≤
X
∧
e
=
coe
1
b
X
134
fveq2
⊢
b
=
g
→
deg
1
R
b
=
deg
1
R
g
135
134
breq1d
⊢
b
=
g
→
deg
1
R
b
≤
X
↔
deg
1
R
g
≤
X
136
fveq2
⊢
b
=
g
→
coe
1
b
=
coe
1
g
137
136
fveq1d
⊢
b
=
g
→
coe
1
b
X
=
coe
1
g
X
138
137
eqeq2d
⊢
b
=
g
→
e
=
coe
1
b
X
↔
e
=
coe
1
g
X
139
135
138
anbi12d
⊢
b
=
g
→
deg
1
R
b
≤
X
∧
e
=
coe
1
b
X
↔
deg
1
R
g
≤
X
∧
e
=
coe
1
g
X
140
139
cbvrexvw
⊢
∃
b
∈
I
deg
1
R
b
≤
X
∧
e
=
coe
1
b
X
↔
∃
g
∈
I
deg
1
R
g
≤
X
∧
e
=
coe
1
g
X
141
133
140
bitrdi
⊢
a
=
e
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∃
g
∈
I
deg
1
R
g
≤
X
∧
e
=
coe
1
g
X
142
141
ralab
⊢
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∀
e
∃
g
∈
I
deg
1
R
g
≤
X
∧
e
=
coe
1
g
X
→
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
143
130
142
sylibr
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
→
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
144
oveq2
⊢
d
=
coe
1
f
X
→
c
⋅
R
d
=
c
⋅
R
coe
1
f
X
145
144
oveq1d
⊢
d
=
coe
1
f
X
→
c
⋅
R
d
+
R
e
=
c
⋅
R
coe
1
f
X
+
R
e
146
145
eleq1d
⊢
d
=
coe
1
f
X
→
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
147
146
ralbidv
⊢
d
=
coe
1
f
X
→
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
coe
1
f
X
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
148
143
147
syl5ibrcom
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
∧
deg
1
R
f
≤
X
→
d
=
coe
1
f
X
→
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
149
148
expimpd
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
∧
f
∈
I
→
deg
1
R
f
≤
X
∧
d
=
coe
1
f
X
→
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
150
149
rexlimdva
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
→
∃
f
∈
I
deg
1
R
f
≤
X
∧
d
=
coe
1
f
X
→
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
151
150
alrimiv
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
→
∀
d
∃
f
∈
I
deg
1
R
f
≤
X
∧
d
=
coe
1
f
X
→
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
152
eqeq1
⊢
a
=
d
→
a
=
coe
1
b
X
↔
d
=
coe
1
b
X
153
152
anbi2d
⊢
a
=
d
→
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
deg
1
R
b
≤
X
∧
d
=
coe
1
b
X
154
153
rexbidv
⊢
a
=
d
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∃
b
∈
I
deg
1
R
b
≤
X
∧
d
=
coe
1
b
X
155
fveq2
⊢
b
=
f
→
deg
1
R
b
=
deg
1
R
f
156
155
breq1d
⊢
b
=
f
→
deg
1
R
b
≤
X
↔
deg
1
R
f
≤
X
157
fveq2
⊢
b
=
f
→
coe
1
b
=
coe
1
f
158
157
fveq1d
⊢
b
=
f
→
coe
1
b
X
=
coe
1
f
X
159
158
eqeq2d
⊢
b
=
f
→
d
=
coe
1
b
X
↔
d
=
coe
1
f
X
160
156
159
anbi12d
⊢
b
=
f
→
deg
1
R
b
≤
X
∧
d
=
coe
1
b
X
↔
deg
1
R
f
≤
X
∧
d
=
coe
1
f
X
161
160
cbvrexvw
⊢
∃
b
∈
I
deg
1
R
b
≤
X
∧
d
=
coe
1
b
X
↔
∃
f
∈
I
deg
1
R
f
≤
X
∧
d
=
coe
1
f
X
162
154
161
bitrdi
⊢
a
=
d
→
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∃
f
∈
I
deg
1
R
f
≤
X
∧
d
=
coe
1
f
X
163
162
ralab
⊢
∀
d
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
↔
∀
d
∃
f
∈
I
deg
1
R
f
≤
X
∧
d
=
coe
1
f
X
→
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
164
151
163
sylibr
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
∧
c
∈
Base
R
→
∀
d
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
165
164
ralrimiva
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
∀
c
∈
Base
R
∀
d
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
166
4
12
98
101
islidl
⊢
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
∈
T
↔
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
⊆
Base
R
∧
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
≠
∅
∧
∀
c
∈
Base
R
∀
d
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
∀
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
c
⋅
R
d
+
R
e
∈
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
167
21
59
165
166
syl3anbrc
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
a
|
∃
b
∈
I
deg
1
R
b
≤
X
∧
a
=
coe
1
b
X
∈
T
168
6
167
eqeltrd
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
ℕ
0
→
S
I
X
∈
T