Metamath Proof Explorer


Theorem hdmap10

Description: Part 10 in Baer p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap10.h H = LHyp K
hdmap10.u U = DVecH K W
hdmap10.v V = Base U
hdmap10.n N = LSpan U
hdmap10.c C = LCDual K W
hdmap10.l L = LSpan C
hdmap10.m M = mapd K W
hdmap10.s S = HDMap K W
hdmap10.k φ K HL W H
hdmap10.t φ T V
Assertion hdmap10 φ M N T = L S T

Proof

Step Hyp Ref Expression
1 hdmap10.h H = LHyp K
2 hdmap10.u U = DVecH K W
3 hdmap10.v V = Base U
4 hdmap10.n N = LSpan U
5 hdmap10.c C = LCDual K W
6 hdmap10.l L = LSpan C
7 hdmap10.m M = mapd K W
8 hdmap10.s S = HDMap K W
9 hdmap10.k φ K HL W H
10 hdmap10.t φ T V
11 sneq T = 0 U T = 0 U
12 11 fveq2d T = 0 U N T = N 0 U
13 12 fveq2d T = 0 U M N T = M N 0 U
14 fveq2 T = 0 U S T = S 0 U
15 14 sneqd T = 0 U S T = S 0 U
16 15 fveq2d T = 0 U L S T = L S 0 U
17 13 16 eqeq12d T = 0 U M N T = L S T M N 0 U = L S 0 U
18 9 adantr φ T 0 U K HL W H
19 eqid I Base K I LTrn K W = I Base K I LTrn K W
20 eqid 0 U = 0 U
21 eqid Base C = Base C
22 eqid HVMap K W = HVMap K W
23 eqid HDMap1 K W = HDMap1 K W
24 10 anim1i φ T 0 U T V T 0 U
25 eldifsn T V 0 U T V T 0 U
26 24 25 sylibr φ T 0 U T V 0 U
27 1 2 3 4 5 6 7 8 18 19 20 21 22 23 26 hdmap10lem φ T 0 U M N T = L S T
28 1 2 9 dvhlmod φ U LMod
29 20 4 lspsn0 U LMod N 0 U = 0 U
30 28 29 syl φ N 0 U = 0 U
31 30 fveq2d φ M N 0 U = M 0 U
32 eqid 0 C = 0 C
33 1 7 2 20 5 32 9 mapd0 φ M 0 U = 0 C
34 1 2 20 5 32 8 9 hdmapval0 φ S 0 U = 0 C
35 34 sneqd φ S 0 U = 0 C
36 35 fveq2d φ L S 0 U = L 0 C
37 1 5 9 lcdlmod φ C LMod
38 32 6 lspsn0 C LMod L 0 C = 0 C
39 37 38 syl φ L 0 C = 0 C
40 36 39 eqtr2d φ 0 C = L S 0 U
41 31 33 40 3eqtrd φ M N 0 U = L S 0 U
42 17 27 41 pm2.61ne φ M N T = L S T