Metamath Proof Explorer


Theorem hdmap1eulemOLDN

Description: Lemma for hdmap1euOLDN . TODO: combine with hdmap1euOLDN or at least share some hypotheses. (Contributed by NM, 15-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmap1eulem.h H=LHypK
hdmap1eulem.u U=DVecHKW
hdmap1eulem.v V=BaseU
hdmap1eulem.s -˙=-U
hdmap1eulem.o 0˙=0U
hdmap1eulem.n N=LSpanU
hdmap1eulem.c C=LCDualKW
hdmap1eulem.d D=BaseC
hdmap1eulem.r R=-C
hdmap1eulem.q Q=0C
hdmap1eulem.j J=LSpanC
hdmap1eulem.m M=mapdKW
hdmap1eulem.i I=HDMap1KW
hdmap1eulem.k φKHLWH
hdmap1eulem.mn φMNX=JF
hdmap1eulem.x φXV0˙
hdmap1eulem.f φFD
hdmap1eulem.y φTV
hdmap1eulem.l L=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
Assertion hdmap1eulemOLDN φ∃!yDzV¬zNXTy=IzIXFzT

Proof

Step Hyp Ref Expression
1 hdmap1eulem.h H=LHypK
2 hdmap1eulem.u U=DVecHKW
3 hdmap1eulem.v V=BaseU
4 hdmap1eulem.s -˙=-U
5 hdmap1eulem.o 0˙=0U
6 hdmap1eulem.n N=LSpanU
7 hdmap1eulem.c C=LCDualKW
8 hdmap1eulem.d D=BaseC
9 hdmap1eulem.r R=-C
10 hdmap1eulem.q Q=0C
11 hdmap1eulem.j J=LSpanC
12 hdmap1eulem.m M=mapdKW
13 hdmap1eulem.i I=HDMap1KW
14 hdmap1eulem.k φKHLWH
15 hdmap1eulem.mn φMNX=JF
16 hdmap1eulem.x φXV0˙
17 hdmap1eulem.f φFD
18 hdmap1eulem.y φTV
19 hdmap1eulem.l L=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
20 1 2 3 4 5 6 7 8 9 10 11 12 19 14 17 15 16 18 mapdh9aOLDN φ∃!yDzV¬zNXTy=LzLXFzT
21 14 ad2antrr φzV¬zNXTKHLWH
22 16 ad2antrr φzV¬zNXTXV0˙
23 17 ad2antrr φzV¬zNXTFD
24 simplr φzV¬zNXTzV
25 1 2 3 4 5 6 7 8 9 10 11 12 13 21 22 23 24 19 hdmap1valc φzV¬zNXTIXFz=LXFz
26 25 oteq2d φzV¬zNXTzIXFzT=zLXFzT
27 26 fveq2d φzV¬zNXTIzIXFzT=IzLXFzT
28 eqid LSubSpU=LSubSpU
29 1 2 14 dvhlmod φULMod
30 29 ad2antrr φzV¬zNXTULMod
31 16 eldifad φXV
32 3 28 6 29 31 18 lspprcl φNXTLSubSpU
33 32 ad2antrr φzV¬zNXTNXTLSubSpU
34 simpr φzV¬zNXT¬zNXT
35 5 28 30 33 24 34 lssneln0 φzV¬zNXTzV0˙
36 15 ad2antrr φzV¬zNXTMNX=JF
37 1 2 14 dvhlvec φULVec
38 37 ad2antrr φzV¬zNXTULVec
39 31 ad2antrr φzV¬zNXTXV
40 18 ad2antrr φzV¬zNXTTV
41 3 6 38 24 39 40 34 lspindpi φzV¬zNXTNzNXNzNT
42 41 simpld φzV¬zNXTNzNX
43 42 necomd φzV¬zNXTNXNz
44 10 19 1 12 2 3 4 5 6 7 8 9 11 21 23 36 22 24 43 mapdhcl φzV¬zNXTLXFzD
45 1 2 3 4 5 6 7 8 9 10 11 12 13 21 35 44 40 19 hdmap1valc φzV¬zNXTIzLXFzT=LzLXFzT
46 27 45 eqtrd φzV¬zNXTIzIXFzT=LzLXFzT
47 46 eqeq2d φzV¬zNXTy=IzIXFzTy=LzLXFzT
48 47 pm5.74da φzV¬zNXTy=IzIXFzT¬zNXTy=LzLXFzT
49 48 ralbidva φzV¬zNXTy=IzIXFzTzV¬zNXTy=LzLXFzT
50 49 reubidv φ∃!yDzV¬zNXTy=IzIXFzT∃!yDzV¬zNXTy=LzLXFzT
51 20 50 mpbird φ∃!yDzV¬zNXTy=IzIXFzT