Metamath Proof Explorer


Theorem hdmap1l6a

Description: Lemma for hdmap1l6 . Part (6) in Baer p. 47, case 1. (Contributed by NM, 23-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h H = LHyp K
hdmap1l6.u U = DVecH K W
hdmap1l6.v V = Base U
hdmap1l6.p + ˙ = + U
hdmap1l6.s - ˙ = - U
hdmap1l6c.o 0 ˙ = 0 U
hdmap1l6.n N = LSpan U
hdmap1l6.c C = LCDual K W
hdmap1l6.d D = Base C
hdmap1l6.a ˙ = + C
hdmap1l6.r R = - C
hdmap1l6.q Q = 0 C
hdmap1l6.l L = LSpan C
hdmap1l6.m M = mapd K W
hdmap1l6.i I = HDMap1 K W
hdmap1l6.k φ K HL W H
hdmap1l6.f φ F D
hdmap1l6cl.x φ X V 0 ˙
hdmap1l6.mn φ M N X = L F
hdmap1l6e.y φ Y V 0 ˙
hdmap1l6e.z φ Z V 0 ˙
hdmap1l6e.xn φ ¬ X N Y Z
hdmap1l6.yz φ N Y N Z
hdmap1l6.fg φ I X F Y = G
hdmap1l6.fe φ I X F Z = E
Assertion hdmap1l6a φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H = LHyp K
2 hdmap1l6.u U = DVecH K W
3 hdmap1l6.v V = Base U
4 hdmap1l6.p + ˙ = + U
5 hdmap1l6.s - ˙ = - U
6 hdmap1l6c.o 0 ˙ = 0 U
7 hdmap1l6.n N = LSpan U
8 hdmap1l6.c C = LCDual K W
9 hdmap1l6.d D = Base C
10 hdmap1l6.a ˙ = + C
11 hdmap1l6.r R = - C
12 hdmap1l6.q Q = 0 C
13 hdmap1l6.l L = LSpan C
14 hdmap1l6.m M = mapd K W
15 hdmap1l6.i I = HDMap1 K W
16 hdmap1l6.k φ K HL W H
17 hdmap1l6.f φ F D
18 hdmap1l6cl.x φ X V 0 ˙
19 hdmap1l6.mn φ M N X = L F
20 hdmap1l6e.y φ Y V 0 ˙
21 hdmap1l6e.z φ Z V 0 ˙
22 hdmap1l6e.xn φ ¬ X N Y Z
23 hdmap1l6.yz φ N Y N Z
24 hdmap1l6.fg φ I X F Y = G
25 hdmap1l6.fe φ I X F Z = E
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6lem2 φ M N Y + ˙ Z = L G ˙ E
27 24 25 oveq12d φ I X F Y ˙ I X F Z = G ˙ E
28 27 sneqd φ I X F Y ˙ I X F Z = G ˙ E
29 28 fveq2d φ L I X F Y ˙ I X F Z = L G ˙ E
30 26 29 eqtr4d φ M N Y + ˙ Z = L I X F Y ˙ I X F Z
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6lem1 φ M N X - ˙ Y + ˙ Z = L F R G ˙ E
32 27 oveq2d φ F R I X F Y ˙ I X F Z = F R G ˙ E
33 32 sneqd φ F R I X F Y ˙ I X F Z = F R G ˙ E
34 33 fveq2d φ L F R I X F Y ˙ I X F Z = L F R G ˙ E
35 31 34 eqtr4d φ M N X - ˙ Y + ˙ Z = L F R I X F Y ˙ I X F Z
36 1 2 16 dvhlmod φ U LMod
37 20 eldifad φ Y V
38 21 eldifad φ Z V
39 3 4 lmodvacl U LMod Y V Z V Y + ˙ Z V
40 36 37 38 39 syl3anc φ Y + ˙ Z V
41 3 4 6 7 36 37 38 23 lmodindp1 φ Y + ˙ Z 0 ˙
42 eldifsn Y + ˙ Z V 0 ˙ Y + ˙ Z V Y + ˙ Z 0 ˙
43 40 41 42 sylanbrc φ Y + ˙ Z V 0 ˙
44 1 8 16 lcdlmod φ C LMod
45 1 2 16 dvhlvec φ U LVec
46 18 eldifad φ X V
47 3 6 7 45 37 21 46 23 22 lspindp2 φ N X N Y ¬ Z N X Y
48 47 simpld φ N X N Y
49 1 2 3 6 7 8 9 13 14 15 16 17 19 48 18 37 hdmap1cl φ I X F Y D
50 3 6 7 45 20 38 46 23 22 lspindp1 φ N X N Z ¬ Y N X Z
51 50 simpld φ N X N Z
52 1 2 3 6 7 8 9 13 14 15 16 17 19 51 18 38 hdmap1cl φ I X F Z D
53 9 10 lmodvacl C LMod I X F Y D I X F Z D I X F Y ˙ I X F Z D
54 44 49 52 53 syl3anc φ I X F Y ˙ I X F Z D
55 eqid LSubSp U = LSubSp U
56 3 55 7 36 37 38 lspprcl φ N Y Z LSubSp U
57 3 4 7 36 37 38 lspprvacl φ Y + ˙ Z N Y Z
58 55 7 36 56 57 lspsnel5a φ N Y + ˙ Z N Y Z
59 3 55 7 36 56 46 lspsnel5 φ X N Y Z N X N Y Z
60 22 59 mtbid φ ¬ N X N Y Z
61 nssne2 N Y + ˙ Z N Y Z ¬ N X N Y Z N Y + ˙ Z N X
62 58 60 61 syl2anc φ N Y + ˙ Z N X
63 62 necomd φ N X N Y + ˙ Z
64 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 43 54 63 19 hdmap1eq φ I X F Y + ˙ Z = I X F Y ˙ I X F Z M N Y + ˙ Z = L I X F Y ˙ I X F Z M N X - ˙ Y + ˙ Z = L F R I X F Y ˙ I X F Z
65 30 35 64 mpbir2and φ I X F Y + ˙ Z = I X F Y ˙ I X F Z