Metamath Proof Explorer


Theorem hdmap1val

Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Restatement of mapdhval .) TODO: change I = ( x e. _V |-> ... to ( ph -> ( I<. X , F , Y > ) = ... in e.g. mapdh8 to shorten proofs with no $d on x . (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1val.h H=LHypK
hdmap1fval.u U=DVecHKW
hdmap1fval.v V=BaseU
hdmap1fval.s -˙=-U
hdmap1fval.o 0˙=0U
hdmap1fval.n N=LSpanU
hdmap1fval.c C=LCDualKW
hdmap1fval.d D=BaseC
hdmap1fval.r R=-C
hdmap1fval.q Q=0C
hdmap1fval.j J=LSpanC
hdmap1fval.m M=mapdKW
hdmap1fval.i I=HDMap1KW
hdmap1fval.k φKAWH
hdmap1val.x φXV
hdmap1val.f φFD
hdmap1val.y φYV
Assertion hdmap1val φIXFY=ifY=0˙QιhD|MNY=JhMNX-˙Y=JFRh

Proof

Step Hyp Ref Expression
1 hdmap1val.h H=LHypK
2 hdmap1fval.u U=DVecHKW
3 hdmap1fval.v V=BaseU
4 hdmap1fval.s -˙=-U
5 hdmap1fval.o 0˙=0U
6 hdmap1fval.n N=LSpanU
7 hdmap1fval.c C=LCDualKW
8 hdmap1fval.d D=BaseC
9 hdmap1fval.r R=-C
10 hdmap1fval.q Q=0C
11 hdmap1fval.j J=LSpanC
12 hdmap1fval.m M=mapdKW
13 hdmap1fval.i I=HDMap1KW
14 hdmap1fval.k φKAWH
15 hdmap1val.x φXV
16 hdmap1val.f φFD
17 hdmap1val.y φYV
18 df-ot XFY=XFY
19 opelxp XFV×DXVFD
20 15 16 19 sylanbrc φXFV×D
21 opelxp XFYV×D×VXFV×DYV
22 20 17 21 sylanbrc φXFYV×D×V
23 18 22 eqeltrid φXFYV×D×V
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 23 hdmap1vallem φIXFY=if2ndXFY=0˙QιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh
25 ot3rdg YV2ndXFY=Y
26 17 25 syl φ2ndXFY=Y
27 26 eqeq1d φ2ndXFY=0˙Y=0˙
28 26 sneqd φ2ndXFY=Y
29 28 fveq2d φN2ndXFY=NY
30 29 fveqeq2d φMN2ndXFY=JhMNY=Jh
31 ot1stg XVFDYV1st1stXFY=X
32 15 16 17 31 syl3anc φ1st1stXFY=X
33 32 26 oveq12d φ1st1stXFY-˙2ndXFY=X-˙Y
34 33 sneqd φ1st1stXFY-˙2ndXFY=X-˙Y
35 34 fveq2d φN1st1stXFY-˙2ndXFY=NX-˙Y
36 35 fveq2d φMN1st1stXFY-˙2ndXFY=MNX-˙Y
37 ot2ndg XVFDYV2nd1stXFY=F
38 15 16 17 37 syl3anc φ2nd1stXFY=F
39 38 oveq1d φ2nd1stXFYRh=FRh
40 39 sneqd φ2nd1stXFYRh=FRh
41 40 fveq2d φJ2nd1stXFYRh=JFRh
42 36 41 eqeq12d φMN1st1stXFY-˙2ndXFY=J2nd1stXFYRhMNX-˙Y=JFRh
43 30 42 anbi12d φMN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRhMNY=JhMNX-˙Y=JFRh
44 43 riotabidv φιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh=ιhD|MNY=JhMNX-˙Y=JFRh
45 27 44 ifbieq2d φif2ndXFY=0˙QιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh=ifY=0˙QιhD|MNY=JhMNX-˙Y=JFRh
46 24 45 eqtrd φIXFY=ifY=0˙QιhD|MNY=JhMNX-˙Y=JFRh