Metamath Proof Explorer


Theorem hdmapglem5

Description: Part 1.2 in Baer p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hdmapglem5.h H=LHypK
hdmapglem5.e E=IBaseKILTrnKW
hdmapglem5.o O=ocHKW
hdmapglem5.u U=DVecHKW
hdmapglem5.v V=BaseU
hdmapglem5.p +˙=+U
hdmapglem5.m -˙=-U
hdmapglem5.q ·˙=U
hdmapglem5.r R=ScalarU
hdmapglem5.b B=BaseR
hdmapglem5.t ×˙=R
hdmapglem5.z 0˙=0R
hdmapglem5.s S=HDMapKW
hdmapglem5.g G=HGMapKW
hdmapglem5.k φKHLWH
hdmapglem5.c φCOE
hdmapglem5.d φDOE
hdmapglem5.i φIB
hdmapglem5.j φJB
Assertion hdmapglem5 φGSDC=SCD

Proof

Step Hyp Ref Expression
1 hdmapglem5.h H=LHypK
2 hdmapglem5.e E=IBaseKILTrnKW
3 hdmapglem5.o O=ocHKW
4 hdmapglem5.u U=DVecHKW
5 hdmapglem5.v V=BaseU
6 hdmapglem5.p +˙=+U
7 hdmapglem5.m -˙=-U
8 hdmapglem5.q ·˙=U
9 hdmapglem5.r R=ScalarU
10 hdmapglem5.b B=BaseR
11 hdmapglem5.t ×˙=R
12 hdmapglem5.z 0˙=0R
13 hdmapglem5.s S=HDMapKW
14 hdmapglem5.g G=HGMapKW
15 hdmapglem5.k φKHLWH
16 hdmapglem5.c φCOE
17 hdmapglem5.d φDOE
18 hdmapglem5.i φIB
19 hdmapglem5.j φJB
20 1 4 15 dvhlmod φULMod
21 9 lmodring ULModRRing
22 20 21 syl φRRing
23 eqid BaseK=BaseK
24 eqid LTrnKW=LTrnKW
25 eqid 0U=0U
26 1 23 24 4 5 25 2 15 dvheveccl φEV0U
27 26 eldifad φEV
28 27 snssd φEV
29 1 4 5 3 dochssv KHLWHEVOEV
30 15 28 29 syl2anc φOEV
31 30 16 sseldd φCV
32 30 17 sseldd φDV
33 1 4 5 9 10 13 15 31 32 hdmapipcl φSDCB
34 1 4 9 10 14 15 33 hgmapcl φGSDCB
35 eqid 1R=1R
36 10 11 35 ringlidm RRingGSDCB1R×˙GSDC=GSDC
37 22 34 36 syl2anc φ1R×˙GSDC=GSDC
38 10 35 ringidcl RRing1RB
39 22 38 syl φ1RB
40 1 4 9 35 14 15 hgmapval1 φG1R=1R
41 40 oveq2d φSDC×˙G1R=SDC×˙1R
42 10 11 35 ringridm RRingSDCBSDC×˙1R=SDC
43 22 33 42 syl2anc φSDC×˙1R=SDC
44 41 43 eqtrd φSDC×˙G1R=SDC
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 33 39 44 hdmapinvlem4 φ1R×˙GSDC=SCD
46 37 45 eqtr3d φGSDC=SCD