Metamath Proof Explorer


Theorem hdmapglem5

Description: Part 1.2 in Baer p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hdmapglem5.h H = LHyp K
hdmapglem5.e E = I Base K I LTrn K W
hdmapglem5.o O = ocH K W
hdmapglem5.u U = DVecH K W
hdmapglem5.v V = Base U
hdmapglem5.p + ˙ = + U
hdmapglem5.m - ˙ = - U
hdmapglem5.q · ˙ = U
hdmapglem5.r R = Scalar U
hdmapglem5.b B = Base R
hdmapglem5.t × ˙ = R
hdmapglem5.z 0 ˙ = 0 R
hdmapglem5.s S = HDMap K W
hdmapglem5.g G = HGMap K W
hdmapglem5.k φ K HL W H
hdmapglem5.c φ C O E
hdmapglem5.d φ D O E
hdmapglem5.i φ I B
hdmapglem5.j φ J B
Assertion hdmapglem5 φ G S D C = S C D

Proof

Step Hyp Ref Expression
1 hdmapglem5.h H = LHyp K
2 hdmapglem5.e E = I Base K I LTrn K W
3 hdmapglem5.o O = ocH K W
4 hdmapglem5.u U = DVecH K W
5 hdmapglem5.v V = Base U
6 hdmapglem5.p + ˙ = + U
7 hdmapglem5.m - ˙ = - U
8 hdmapglem5.q · ˙ = U
9 hdmapglem5.r R = Scalar U
10 hdmapglem5.b B = Base R
11 hdmapglem5.t × ˙ = R
12 hdmapglem5.z 0 ˙ = 0 R
13 hdmapglem5.s S = HDMap K W
14 hdmapglem5.g G = HGMap K W
15 hdmapglem5.k φ K HL W H
16 hdmapglem5.c φ C O E
17 hdmapglem5.d φ D O E
18 hdmapglem5.i φ I B
19 hdmapglem5.j φ J B
20 1 4 15 dvhlmod φ U LMod
21 9 lmodring U LMod R Ring
22 20 21 syl φ R Ring
23 eqid Base K = Base K
24 eqid LTrn K W = LTrn K W
25 eqid 0 U = 0 U
26 1 23 24 4 5 25 2 15 dvheveccl φ E V 0 U
27 26 eldifad φ E V
28 27 snssd φ E V
29 1 4 5 3 dochssv K HL W H E V O E V
30 15 28 29 syl2anc φ O E V
31 30 16 sseldd φ C V
32 30 17 sseldd φ D V
33 1 4 5 9 10 13 15 31 32 hdmapipcl φ S D C B
34 1 4 9 10 14 15 33 hgmapcl φ G S D C B
35 eqid 1 R = 1 R
36 10 11 35 ringlidm R Ring G S D C B 1 R × ˙ G S D C = G S D C
37 22 34 36 syl2anc φ 1 R × ˙ G S D C = G S D C
38 10 35 ringidcl R Ring 1 R B
39 22 38 syl φ 1 R B
40 1 4 9 35 14 15 hgmapval1 φ G 1 R = 1 R
41 40 oveq2d φ S D C × ˙ G 1 R = S D C × ˙ 1 R
42 10 11 35 ringridm R Ring S D C B S D C × ˙ 1 R = S D C
43 22 33 42 syl2anc φ S D C × ˙ 1 R = S D C
44 41 43 eqtrd φ S D C × ˙ G 1 R = S D C
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 33 39 44 hdmapinvlem4 φ 1 R × ˙ G S D C = S C D
46 37 45 eqtr3d φ G S D C = S C D