Description: Part of proof of part 12 in Baer p. 49 line 15, T =/= P. Our (`' M `( L{ ( ( Su ) .+b s ) } ) ) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmaprnlem1.h | |
|
hdmaprnlem1.u | |
||
hdmaprnlem1.v | |
||
hdmaprnlem1.n | |
||
hdmaprnlem1.c | |
||
hdmaprnlem1.l | |
||
hdmaprnlem1.m | |
||
hdmaprnlem1.s | |
||
hdmaprnlem1.k | |
||
hdmaprnlem1.se | |
||
hdmaprnlem1.ve | |
||
hdmaprnlem1.e | |
||
hdmaprnlem1.ue | |
||
hdmaprnlem1.un | |
||
hdmaprnlem1.d | |
||
hdmaprnlem1.q | |
||
hdmaprnlem1.o | |
||
hdmaprnlem1.a | |
||
Assertion | hdmaprnlem3N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.h | |
|
2 | hdmaprnlem1.u | |
|
3 | hdmaprnlem1.v | |
|
4 | hdmaprnlem1.n | |
|
5 | hdmaprnlem1.c | |
|
6 | hdmaprnlem1.l | |
|
7 | hdmaprnlem1.m | |
|
8 | hdmaprnlem1.s | |
|
9 | hdmaprnlem1.k | |
|
10 | hdmaprnlem1.se | |
|
11 | hdmaprnlem1.ve | |
|
12 | hdmaprnlem1.e | |
|
13 | hdmaprnlem1.ue | |
|
14 | hdmaprnlem1.un | |
|
15 | hdmaprnlem1.d | |
|
16 | hdmaprnlem1.q | |
|
17 | hdmaprnlem1.o | |
|
18 | hdmaprnlem1.a | |
|
19 | 1 5 9 | lcdlmod | |
20 | 1 2 3 5 15 8 9 13 | hdmapcl | |
21 | 10 | eldifad | |
22 | 15 18 | lmodvacl | |
23 | 19 20 21 22 | syl3anc | |
24 | eqid | |
|
25 | 15 24 6 | lspsncl | |
26 | 19 21 25 | syl2anc | |
27 | 15 6 | lspsnid | |
28 | 19 21 27 | syl2anc | |
29 | 1 5 9 | lcdlvec | |
30 | eqid | |
|
31 | 1 2 9 | dvhlmod | |
32 | 3 30 4 | lspsncl | |
33 | 31 11 32 | syl2anc | |
34 | 17 30 31 33 13 14 | lssneln0 | |
35 | 1 2 3 17 5 16 15 8 9 34 | hdmapnzcl | |
36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | hdmaprnlem1N | |
37 | 15 16 6 29 35 21 36 | lspsnne1 | |
38 | 15 18 24 19 26 28 20 37 | lssvancl2 | |
39 | 15 6 19 23 21 38 | lspsnne2 | |
40 | 39 | necomd | |
41 | 15 24 6 | lspsncl | |
42 | 19 23 41 | syl2anc | |
43 | 1 7 5 24 9 | mapdrn2 | |
44 | 42 43 | eleqtrrd | |
45 | 1 7 9 44 | mapdcnvid2 | |
46 | 40 12 45 | 3netr4d | |
47 | 1 7 2 30 9 44 | mapdcnvcl | |
48 | 1 2 30 7 9 33 47 | mapd11 | |
49 | 48 | necon3bid | |
50 | 46 49 | mpbid | |