Metamath Proof Explorer


Theorem hdmaprnlem3N

Description: Part of proof of part 12 in Baer p. 49 line 15, T =/= P. Our (`' M `( L{ ( ( Su ) .+b s ) } ) ) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H=LHypK
hdmaprnlem1.u U=DVecHKW
hdmaprnlem1.v V=BaseU
hdmaprnlem1.n N=LSpanU
hdmaprnlem1.c C=LCDualKW
hdmaprnlem1.l L=LSpanC
hdmaprnlem1.m M=mapdKW
hdmaprnlem1.s S=HDMapKW
hdmaprnlem1.k φKHLWH
hdmaprnlem1.se φsDQ
hdmaprnlem1.ve φvV
hdmaprnlem1.e φMNv=Ls
hdmaprnlem1.ue φuV
hdmaprnlem1.un φ¬uNv
hdmaprnlem1.d D=BaseC
hdmaprnlem1.q Q=0C
hdmaprnlem1.o 0˙=0U
hdmaprnlem1.a ˙=+C
Assertion hdmaprnlem3N φNvM-1LSu˙s

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H=LHypK
2 hdmaprnlem1.u U=DVecHKW
3 hdmaprnlem1.v V=BaseU
4 hdmaprnlem1.n N=LSpanU
5 hdmaprnlem1.c C=LCDualKW
6 hdmaprnlem1.l L=LSpanC
7 hdmaprnlem1.m M=mapdKW
8 hdmaprnlem1.s S=HDMapKW
9 hdmaprnlem1.k φKHLWH
10 hdmaprnlem1.se φsDQ
11 hdmaprnlem1.ve φvV
12 hdmaprnlem1.e φMNv=Ls
13 hdmaprnlem1.ue φuV
14 hdmaprnlem1.un φ¬uNv
15 hdmaprnlem1.d D=BaseC
16 hdmaprnlem1.q Q=0C
17 hdmaprnlem1.o 0˙=0U
18 hdmaprnlem1.a ˙=+C
19 1 5 9 lcdlmod φCLMod
20 1 2 3 5 15 8 9 13 hdmapcl φSuD
21 10 eldifad φsD
22 15 18 lmodvacl CLModSuDsDSu˙sD
23 19 20 21 22 syl3anc φSu˙sD
24 eqid LSubSpC=LSubSpC
25 15 24 6 lspsncl CLModsDLsLSubSpC
26 19 21 25 syl2anc φLsLSubSpC
27 15 6 lspsnid CLModsDsLs
28 19 21 27 syl2anc φsLs
29 1 5 9 lcdlvec φCLVec
30 eqid LSubSpU=LSubSpU
31 1 2 9 dvhlmod φULMod
32 3 30 4 lspsncl ULModvVNvLSubSpU
33 31 11 32 syl2anc φNvLSubSpU
34 17 30 31 33 13 14 lssneln0 φuV0˙
35 1 2 3 17 5 16 15 8 9 34 hdmapnzcl φSuDQ
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 hdmaprnlem1N φLSuLs
37 15 16 6 29 35 21 36 lspsnne1 φ¬SuLs
38 15 18 24 19 26 28 20 37 lssvancl2 φ¬Su˙sLs
39 15 6 19 23 21 38 lspsnne2 φLSu˙sLs
40 39 necomd φLsLSu˙s
41 15 24 6 lspsncl CLModSu˙sDLSu˙sLSubSpC
42 19 23 41 syl2anc φLSu˙sLSubSpC
43 1 7 5 24 9 mapdrn2 φranM=LSubSpC
44 42 43 eleqtrrd φLSu˙sranM
45 1 7 9 44 mapdcnvid2 φMM-1LSu˙s=LSu˙s
46 40 12 45 3netr4d φMNvMM-1LSu˙s
47 1 7 2 30 9 44 mapdcnvcl φM-1LSu˙sLSubSpU
48 1 2 30 7 9 33 47 mapd11 φMNv=MM-1LSu˙sNv=M-1LSu˙s
49 48 necon3bid φMNvMM-1LSu˙sNvM-1LSu˙s
50 46 49 mpbid φNvM-1LSu˙s