Metamath Proof Explorer


Theorem hdmaprnlem3uN

Description: Part of proof of part 12 in Baer p. 49. (Contributed by NM, 29-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H = LHyp K
hdmaprnlem1.u U = DVecH K W
hdmaprnlem1.v V = Base U
hdmaprnlem1.n N = LSpan U
hdmaprnlem1.c C = LCDual K W
hdmaprnlem1.l L = LSpan C
hdmaprnlem1.m M = mapd K W
hdmaprnlem1.s S = HDMap K W
hdmaprnlem1.k φ K HL W H
hdmaprnlem1.se φ s D Q
hdmaprnlem1.ve φ v V
hdmaprnlem1.e φ M N v = L s
hdmaprnlem1.ue φ u V
hdmaprnlem1.un φ ¬ u N v
hdmaprnlem1.d D = Base C
hdmaprnlem1.q Q = 0 C
hdmaprnlem1.o 0 ˙ = 0 U
hdmaprnlem1.a ˙ = + C
Assertion hdmaprnlem3uN φ N u M -1 L S u ˙ s

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H = LHyp K
2 hdmaprnlem1.u U = DVecH K W
3 hdmaprnlem1.v V = Base U
4 hdmaprnlem1.n N = LSpan U
5 hdmaprnlem1.c C = LCDual K W
6 hdmaprnlem1.l L = LSpan C
7 hdmaprnlem1.m M = mapd K W
8 hdmaprnlem1.s S = HDMap K W
9 hdmaprnlem1.k φ K HL W H
10 hdmaprnlem1.se φ s D Q
11 hdmaprnlem1.ve φ v V
12 hdmaprnlem1.e φ M N v = L s
13 hdmaprnlem1.ue φ u V
14 hdmaprnlem1.un φ ¬ u N v
15 hdmaprnlem1.d D = Base C
16 hdmaprnlem1.q Q = 0 C
17 hdmaprnlem1.o 0 ˙ = 0 U
18 hdmaprnlem1.a ˙ = + C
19 eqid LSubSp U = LSubSp U
20 1 2 9 dvhlmod φ U LMod
21 3 19 4 lspsncl U LMod u V N u LSubSp U
22 20 13 21 syl2anc φ N u LSubSp U
23 1 7 2 19 9 22 mapdcnvid1N φ M -1 M N u = N u
24 1 2 3 4 5 6 7 8 9 13 hdmap10 φ M N u = L S u
25 1 5 9 lcdlvec φ C LVec
26 1 2 3 5 15 8 9 13 hdmapcl φ S u D
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 hdmaprnlem1N φ L S u L s
28 15 18 16 6 25 26 10 27 lspindp3 φ L S u L S u ˙ s
29 24 28 eqnetrd φ M N u L S u ˙ s
30 1 7 2 19 9 22 mapdcl φ M N u ran M
31 1 5 9 lcdlmod φ C LMod
32 10 eldifad φ s D
33 15 18 lmodvacl C LMod S u D s D S u ˙ s D
34 31 26 32 33 syl3anc φ S u ˙ s D
35 eqid LSubSp C = LSubSp C
36 15 35 6 lspsncl C LMod S u ˙ s D L S u ˙ s LSubSp C
37 31 34 36 syl2anc φ L S u ˙ s LSubSp C
38 1 7 5 35 9 mapdrn2 φ ran M = LSubSp C
39 37 38 eleqtrrd φ L S u ˙ s ran M
40 1 7 9 30 39 mapdcnv11N φ M -1 M N u = M -1 L S u ˙ s M N u = L S u ˙ s
41 40 necon3bid φ M -1 M N u M -1 L S u ˙ s M N u L S u ˙ s
42 29 41 mpbird φ M -1 M N u M -1 L S u ˙ s
43 23 42 eqnetrrd φ N u M -1 L S u ˙ s