Metamath Proof Explorer


Theorem hdmaprnlem3uN

Description: Part of proof of part 12 in Baer p. 49. (Contributed by NM, 29-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H=LHypK
hdmaprnlem1.u U=DVecHKW
hdmaprnlem1.v V=BaseU
hdmaprnlem1.n N=LSpanU
hdmaprnlem1.c C=LCDualKW
hdmaprnlem1.l L=LSpanC
hdmaprnlem1.m M=mapdKW
hdmaprnlem1.s S=HDMapKW
hdmaprnlem1.k φKHLWH
hdmaprnlem1.se φsDQ
hdmaprnlem1.ve φvV
hdmaprnlem1.e φMNv=Ls
hdmaprnlem1.ue φuV
hdmaprnlem1.un φ¬uNv
hdmaprnlem1.d D=BaseC
hdmaprnlem1.q Q=0C
hdmaprnlem1.o 0˙=0U
hdmaprnlem1.a ˙=+C
Assertion hdmaprnlem3uN φNuM-1LSu˙s

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H=LHypK
2 hdmaprnlem1.u U=DVecHKW
3 hdmaprnlem1.v V=BaseU
4 hdmaprnlem1.n N=LSpanU
5 hdmaprnlem1.c C=LCDualKW
6 hdmaprnlem1.l L=LSpanC
7 hdmaprnlem1.m M=mapdKW
8 hdmaprnlem1.s S=HDMapKW
9 hdmaprnlem1.k φKHLWH
10 hdmaprnlem1.se φsDQ
11 hdmaprnlem1.ve φvV
12 hdmaprnlem1.e φMNv=Ls
13 hdmaprnlem1.ue φuV
14 hdmaprnlem1.un φ¬uNv
15 hdmaprnlem1.d D=BaseC
16 hdmaprnlem1.q Q=0C
17 hdmaprnlem1.o 0˙=0U
18 hdmaprnlem1.a ˙=+C
19 eqid LSubSpU=LSubSpU
20 1 2 9 dvhlmod φULMod
21 3 19 4 lspsncl ULModuVNuLSubSpU
22 20 13 21 syl2anc φNuLSubSpU
23 1 7 2 19 9 22 mapdcnvid1N φM-1MNu=Nu
24 1 2 3 4 5 6 7 8 9 13 hdmap10 φMNu=LSu
25 1 5 9 lcdlvec φCLVec
26 1 2 3 5 15 8 9 13 hdmapcl φSuD
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 hdmaprnlem1N φLSuLs
28 15 18 16 6 25 26 10 27 lspindp3 φLSuLSu˙s
29 24 28 eqnetrd φMNuLSu˙s
30 1 7 2 19 9 22 mapdcl φMNuranM
31 1 5 9 lcdlmod φCLMod
32 10 eldifad φsD
33 15 18 lmodvacl CLModSuDsDSu˙sD
34 31 26 32 33 syl3anc φSu˙sD
35 eqid LSubSpC=LSubSpC
36 15 35 6 lspsncl CLModSu˙sDLSu˙sLSubSpC
37 31 34 36 syl2anc φLSu˙sLSubSpC
38 1 7 5 35 9 mapdrn2 φranM=LSubSpC
39 37 38 eleqtrrd φLSu˙sranM
40 1 7 9 30 39 mapdcnv11N φM-1MNu=M-1LSu˙sMNu=LSu˙s
41 40 necon3bid φM-1MNuM-1LSu˙sMNuLSu˙s
42 29 41 mpbird φM-1MNuM-1LSu˙s
43 23 42 eqnetrrd φNuM-1LSu˙s