Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hgmapval.h | |
|
hgmapfval.u | |
||
hgmapfval.v | |
||
hgmapfval.t | |
||
hgmapfval.r | |
||
hgmapfval.b | |
||
hgmapfval.c | |
||
hgmapfval.s | |
||
hgmapfval.m | |
||
hgmapfval.i | |
||
hgmapfval.k | |
||
Assertion | hgmapfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmapval.h | |
|
2 | hgmapfval.u | |
|
3 | hgmapfval.v | |
|
4 | hgmapfval.t | |
|
5 | hgmapfval.r | |
|
6 | hgmapfval.b | |
|
7 | hgmapfval.c | |
|
8 | hgmapfval.s | |
|
9 | hgmapfval.m | |
|
10 | hgmapfval.i | |
|
11 | hgmapfval.k | |
|
12 | 1 | hgmapffval | |
13 | 12 | fveq1d | |
14 | 10 13 | eqtrid | |
15 | fveq2 | |
|
16 | 15 2 | eqtr4di | |
17 | fveq2 | |
|
18 | 17 9 | eqtr4di | |
19 | 2fveq3 | |
|
20 | 19 | oveqd | |
21 | 20 | eqeq2d | |
22 | 21 | ralbidv | |
23 | 22 | riotabidv | |
24 | 23 | mpteq2dv | |
25 | 24 | eleq2d | |
26 | 18 25 | sbceqbid | |
27 | 26 | sbcbidv | |
28 | 16 27 | sbceqbid | |
29 | 2 | fvexi | |
30 | fvex | |
|
31 | 9 | fvexi | |
32 | simp2 | |
|
33 | simp1 | |
|
34 | 33 | fveq2d | |
35 | 34 5 | eqtr4di | |
36 | 35 | fveq2d | |
37 | 32 36 | eqtrd | |
38 | 37 6 | eqtr4di | |
39 | simp2 | |
|
40 | simp1 | |
|
41 | 40 | fveq2d | |
42 | 41 3 | eqtr4di | |
43 | simp3 | |
|
44 | 40 | fveq2d | |
45 | 44 4 | eqtr4di | |
46 | 45 | oveqd | |
47 | 43 46 | fveq12d | |
48 | eqidd | |
|
49 | 48 7 | eqtr4di | |
50 | 49 | fveq2d | |
51 | 50 8 | eqtr4di | |
52 | eqidd | |
|
53 | 43 | fveq1d | |
54 | 51 52 53 | oveq123d | |
55 | 47 54 | eqeq12d | |
56 | 42 55 | raleqbidv | |
57 | 39 56 | riotaeqbidv | |
58 | 39 57 | mpteq12dv | |
59 | 58 | eleq2d | |
60 | 38 59 | syld3an2 | |
61 | 29 30 31 60 | sbc3ie | |
62 | 28 61 | bitrdi | |
63 | 62 | eqabcdv | |
64 | eqid | |
|
65 | 63 64 6 | mptfvmpt | |
66 | 14 65 | sylan9eq | |
67 | 11 66 | syl | |