Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapval.h |
|
2 |
|
hgmapfval.u |
|
3 |
|
hgmapfval.v |
|
4 |
|
hgmapfval.t |
|
5 |
|
hgmapfval.r |
|
6 |
|
hgmapfval.b |
|
7 |
|
hgmapfval.c |
|
8 |
|
hgmapfval.s |
|
9 |
|
hgmapfval.m |
|
10 |
|
hgmapfval.i |
|
11 |
|
hgmapfval.k |
|
12 |
1
|
hgmapffval |
|
13 |
12
|
fveq1d |
|
14 |
10 13
|
eqtrid |
|
15 |
|
fveq2 |
|
16 |
15 2
|
eqtr4di |
|
17 |
|
fveq2 |
|
18 |
17 9
|
eqtr4di |
|
19 |
|
2fveq3 |
|
20 |
19
|
oveqd |
|
21 |
20
|
eqeq2d |
|
22 |
21
|
ralbidv |
|
23 |
22
|
riotabidv |
|
24 |
23
|
mpteq2dv |
|
25 |
24
|
eleq2d |
|
26 |
18 25
|
sbceqbid |
|
27 |
26
|
sbcbidv |
|
28 |
16 27
|
sbceqbid |
|
29 |
2
|
fvexi |
|
30 |
|
fvex |
|
31 |
9
|
fvexi |
|
32 |
|
simp2 |
|
33 |
|
simp1 |
|
34 |
33
|
fveq2d |
|
35 |
34 5
|
eqtr4di |
|
36 |
35
|
fveq2d |
|
37 |
32 36
|
eqtrd |
|
38 |
37 6
|
eqtr4di |
|
39 |
|
simp2 |
|
40 |
|
simp1 |
|
41 |
40
|
fveq2d |
|
42 |
41 3
|
eqtr4di |
|
43 |
|
simp3 |
|
44 |
40
|
fveq2d |
|
45 |
44 4
|
eqtr4di |
|
46 |
45
|
oveqd |
|
47 |
43 46
|
fveq12d |
|
48 |
|
eqidd |
|
49 |
48 7
|
eqtr4di |
|
50 |
49
|
fveq2d |
|
51 |
50 8
|
eqtr4di |
|
52 |
|
eqidd |
|
53 |
43
|
fveq1d |
|
54 |
51 52 53
|
oveq123d |
|
55 |
47 54
|
eqeq12d |
|
56 |
42 55
|
raleqbidv |
|
57 |
39 56
|
riotaeqbidv |
|
58 |
39 57
|
mpteq12dv |
|
59 |
58
|
eleq2d |
|
60 |
38 59
|
syld3an2 |
|
61 |
29 30 31 60
|
sbc3ie |
|
62 |
28 61
|
bitrdi |
|
63 |
62
|
abbi1dv |
|
64 |
|
eqid |
|
65 |
63 64 6
|
mptfvmpt |
|
66 |
14 65
|
sylan9eq |
|
67 |
11 66
|
syl |
|