Metamath Proof Explorer


Theorem hgmapfval

Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015)

Ref Expression
Hypotheses hgmapval.h H=LHypK
hgmapfval.u U=DVecHKW
hgmapfval.v V=BaseU
hgmapfval.t ·˙=U
hgmapfval.r R=ScalarU
hgmapfval.b B=BaseR
hgmapfval.c C=LCDualKW
hgmapfval.s ˙=C
hgmapfval.m M=HDMapKW
hgmapfval.i I=HGMapKW
hgmapfval.k φKYWH
Assertion hgmapfval φI=xBιyB|vVMx·˙v=y˙Mv

Proof

Step Hyp Ref Expression
1 hgmapval.h H=LHypK
2 hgmapfval.u U=DVecHKW
3 hgmapfval.v V=BaseU
4 hgmapfval.t ·˙=U
5 hgmapfval.r R=ScalarU
6 hgmapfval.b B=BaseR
7 hgmapfval.c C=LCDualKW
8 hgmapfval.s ˙=C
9 hgmapfval.m M=HDMapKW
10 hgmapfval.i I=HGMapKW
11 hgmapfval.k φKYWH
12 1 hgmapffval KYHGMapK=wHa|[˙DVecHKw/u]˙[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmv
13 12 fveq1d KYHGMapKW=wHa|[˙DVecHKw/u]˙[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmvW
14 10 13 eqtrid KYI=wHa|[˙DVecHKw/u]˙[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmvW
15 fveq2 w=WDVecHKw=DVecHKW
16 15 2 eqtr4di w=WDVecHKw=U
17 fveq2 w=WHDMapKw=HDMapKW
18 17 9 eqtr4di w=WHDMapKw=M
19 2fveq3 w=WLCDualKw=LCDualKW
20 19 oveqd w=WyLCDualKwmv=yLCDualKWmv
21 20 eqeq2d w=Wmxuv=yLCDualKwmvmxuv=yLCDualKWmv
22 21 ralbidv w=WvBaseumxuv=yLCDualKwmvvBaseumxuv=yLCDualKWmv
23 22 riotabidv w=Wιyb|vBaseumxuv=yLCDualKwmv=ιyb|vBaseumxuv=yLCDualKWmv
24 23 mpteq2dv w=Wxbιyb|vBaseumxuv=yLCDualKwmv=xbιyb|vBaseumxuv=yLCDualKWmv
25 24 eleq2d w=Waxbιyb|vBaseumxuv=yLCDualKwmvaxbιyb|vBaseumxuv=yLCDualKWmv
26 18 25 sbceqbid w=W[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmv[˙M/m]˙axbιyb|vBaseumxuv=yLCDualKWmv
27 26 sbcbidv w=W[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmv[˙BaseScalaru/b]˙[˙M/m]˙axbιyb|vBaseumxuv=yLCDualKWmv
28 16 27 sbceqbid w=W[˙DVecHKw/u]˙[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmv[˙U/u]˙[˙BaseScalaru/b]˙[˙M/m]˙axbιyb|vBaseumxuv=yLCDualKWmv
29 2 fvexi UV
30 fvex BaseScalaruV
31 9 fvexi MV
32 simp2 u=Ub=BaseScalarum=Mb=BaseScalaru
33 simp1 u=Ub=BaseScalarum=Mu=U
34 33 fveq2d u=Ub=BaseScalarum=MScalaru=ScalarU
35 34 5 eqtr4di u=Ub=BaseScalarum=MScalaru=R
36 35 fveq2d u=Ub=BaseScalarum=MBaseScalaru=BaseR
37 32 36 eqtrd u=Ub=BaseScalarum=Mb=BaseR
38 37 6 eqtr4di u=Ub=BaseScalarum=Mb=B
39 simp2 u=Ub=Bm=Mb=B
40 simp1 u=Ub=Bm=Mu=U
41 40 fveq2d u=Ub=Bm=MBaseu=BaseU
42 41 3 eqtr4di u=Ub=Bm=MBaseu=V
43 simp3 u=Ub=Bm=Mm=M
44 40 fveq2d u=Ub=Bm=Mu=U
45 44 4 eqtr4di u=Ub=Bm=Mu=·˙
46 45 oveqd u=Ub=Bm=Mxuv=x·˙v
47 43 46 fveq12d u=Ub=Bm=Mmxuv=Mx·˙v
48 eqidd u=Ub=Bm=MLCDualKW=LCDualKW
49 48 7 eqtr4di u=Ub=Bm=MLCDualKW=C
50 49 fveq2d u=Ub=Bm=MLCDualKW=C
51 50 8 eqtr4di u=Ub=Bm=MLCDualKW=˙
52 eqidd u=Ub=Bm=My=y
53 43 fveq1d u=Ub=Bm=Mmv=Mv
54 51 52 53 oveq123d u=Ub=Bm=MyLCDualKWmv=y˙Mv
55 47 54 eqeq12d u=Ub=Bm=Mmxuv=yLCDualKWmvMx·˙v=y˙Mv
56 42 55 raleqbidv u=Ub=Bm=MvBaseumxuv=yLCDualKWmvvVMx·˙v=y˙Mv
57 39 56 riotaeqbidv u=Ub=Bm=Mιyb|vBaseumxuv=yLCDualKWmv=ιyB|vVMx·˙v=y˙Mv
58 39 57 mpteq12dv u=Ub=Bm=Mxbιyb|vBaseumxuv=yLCDualKWmv=xBιyB|vVMx·˙v=y˙Mv
59 58 eleq2d u=Ub=Bm=Maxbιyb|vBaseumxuv=yLCDualKWmvaxBιyB|vVMx·˙v=y˙Mv
60 38 59 syld3an2 u=Ub=BaseScalarum=Maxbιyb|vBaseumxuv=yLCDualKWmvaxBιyB|vVMx·˙v=y˙Mv
61 29 30 31 60 sbc3ie [˙U/u]˙[˙BaseScalaru/b]˙[˙M/m]˙axbιyb|vBaseumxuv=yLCDualKWmvaxBιyB|vVMx·˙v=y˙Mv
62 28 61 bitrdi w=W[˙DVecHKw/u]˙[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmvaxBιyB|vVMx·˙v=y˙Mv
63 62 eqabcdv w=Wa|[˙DVecHKw/u]˙[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmv=xBιyB|vVMx·˙v=y˙Mv
64 eqid wHa|[˙DVecHKw/u]˙[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmv=wHa|[˙DVecHKw/u]˙[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmv
65 63 64 6 mptfvmpt WHwHa|[˙DVecHKw/u]˙[˙BaseScalaru/b]˙[˙HDMapKw/m]˙axbιyb|vBaseumxuv=yLCDualKwmvW=xBιyB|vVMx·˙v=y˙Mv
66 14 65 sylan9eq KYWHI=xBιyB|vVMx·˙v=y˙Mv
67 11 66 syl φI=xBιyB|vVMx·˙v=y˙Mv