Description: Lemma for hgmaprnN . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hgmaprnlem1.h | |
|
hgmaprnlem1.u | |
||
hgmaprnlem1.v | |
||
hgmaprnlem1.r | |
||
hgmaprnlem1.b | |
||
hgmaprnlem1.t | |
||
hgmaprnlem1.o | |
||
hgmaprnlem1.c | |
||
hgmaprnlem1.d | |
||
hgmaprnlem1.p | |
||
hgmaprnlem1.a | |
||
hgmaprnlem1.e | |
||
hgmaprnlem1.q | |
||
hgmaprnlem1.s | |
||
hgmaprnlem1.g | |
||
hgmaprnlem1.k | |
||
hgmaprnlem1.z | |
||
hgmaprnlem1.t2 | |
||
hgmaprnlem1.s2 | |
||
hgmaprnlem1.sz | |
||
hgmaprnlem1.k2 | |
||
hgmaprnlem1.sk | |
||
Assertion | hgmaprnlem1N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmaprnlem1.h | |
|
2 | hgmaprnlem1.u | |
|
3 | hgmaprnlem1.v | |
|
4 | hgmaprnlem1.r | |
|
5 | hgmaprnlem1.b | |
|
6 | hgmaprnlem1.t | |
|
7 | hgmaprnlem1.o | |
|
8 | hgmaprnlem1.c | |
|
9 | hgmaprnlem1.d | |
|
10 | hgmaprnlem1.p | |
|
11 | hgmaprnlem1.a | |
|
12 | hgmaprnlem1.e | |
|
13 | hgmaprnlem1.q | |
|
14 | hgmaprnlem1.s | |
|
15 | hgmaprnlem1.g | |
|
16 | hgmaprnlem1.k | |
|
17 | hgmaprnlem1.z | |
|
18 | hgmaprnlem1.t2 | |
|
19 | hgmaprnlem1.s2 | |
|
20 | hgmaprnlem1.sz | |
|
21 | hgmaprnlem1.k2 | |
|
22 | hgmaprnlem1.sk | |
|
23 | 22 | fveq2d | |
24 | 18 | eldifad | |
25 | 1 2 3 6 4 5 8 12 14 15 16 24 21 | hgmapvs | |
26 | 23 20 25 | 3eqtr3d | |
27 | 1 8 16 | lcdlvec | |
28 | 1 2 4 5 8 10 11 15 16 21 | hgmapdcl | |
29 | 1 2 3 8 9 14 16 24 | hdmapcl | |
30 | eldifsni | |
|
31 | 18 30 | syl | |
32 | 1 2 3 7 8 13 14 16 24 | hdmapeq0 | |
33 | 32 | necon3bid | |
34 | 31 33 | mpbird | |
35 | 9 12 10 11 13 27 17 28 29 34 | lvecvscan2 | |
36 | 26 35 | mpbid | |
37 | 1 2 4 5 15 16 | hgmapfnN | |
38 | fnfvelrn | |
|
39 | 37 21 38 | syl2anc | |
40 | 36 39 | eqeltrd | |