Metamath Proof Explorer


Theorem hgmaprnlem1N

Description: Lemma for hgmaprnN . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H=LHypK
hgmaprnlem1.u U=DVecHKW
hgmaprnlem1.v V=BaseU
hgmaprnlem1.r R=ScalarU
hgmaprnlem1.b B=BaseR
hgmaprnlem1.t ·˙=U
hgmaprnlem1.o 0˙=0U
hgmaprnlem1.c C=LCDualKW
hgmaprnlem1.d D=BaseC
hgmaprnlem1.p P=ScalarC
hgmaprnlem1.a A=BaseP
hgmaprnlem1.e ˙=C
hgmaprnlem1.q Q=0C
hgmaprnlem1.s S=HDMapKW
hgmaprnlem1.g G=HGMapKW
hgmaprnlem1.k φKHLWH
hgmaprnlem1.z φzA
hgmaprnlem1.t2 φtV0˙
hgmaprnlem1.s2 φsV
hgmaprnlem1.sz φSs=z˙St
hgmaprnlem1.k2 φkB
hgmaprnlem1.sk φs=k·˙t
Assertion hgmaprnlem1N φzranG

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H=LHypK
2 hgmaprnlem1.u U=DVecHKW
3 hgmaprnlem1.v V=BaseU
4 hgmaprnlem1.r R=ScalarU
5 hgmaprnlem1.b B=BaseR
6 hgmaprnlem1.t ·˙=U
7 hgmaprnlem1.o 0˙=0U
8 hgmaprnlem1.c C=LCDualKW
9 hgmaprnlem1.d D=BaseC
10 hgmaprnlem1.p P=ScalarC
11 hgmaprnlem1.a A=BaseP
12 hgmaprnlem1.e ˙=C
13 hgmaprnlem1.q Q=0C
14 hgmaprnlem1.s S=HDMapKW
15 hgmaprnlem1.g G=HGMapKW
16 hgmaprnlem1.k φKHLWH
17 hgmaprnlem1.z φzA
18 hgmaprnlem1.t2 φtV0˙
19 hgmaprnlem1.s2 φsV
20 hgmaprnlem1.sz φSs=z˙St
21 hgmaprnlem1.k2 φkB
22 hgmaprnlem1.sk φs=k·˙t
23 22 fveq2d φSs=Sk·˙t
24 18 eldifad φtV
25 1 2 3 6 4 5 8 12 14 15 16 24 21 hgmapvs φSk·˙t=Gk˙St
26 23 20 25 3eqtr3d φz˙St=Gk˙St
27 1 8 16 lcdlvec φCLVec
28 1 2 4 5 8 10 11 15 16 21 hgmapdcl φGkA
29 1 2 3 8 9 14 16 24 hdmapcl φStD
30 eldifsni tV0˙t0˙
31 18 30 syl φt0˙
32 1 2 3 7 8 13 14 16 24 hdmapeq0 φSt=Qt=0˙
33 32 necon3bid φStQt0˙
34 31 33 mpbird φStQ
35 9 12 10 11 13 27 17 28 29 34 lvecvscan2 φz˙St=Gk˙Stz=Gk
36 26 35 mpbid φz=Gk
37 1 2 4 5 15 16 hgmapfnN φGFnB
38 fnfvelrn GFnBkBGkranG
39 37 21 38 syl2anc φGkranG
40 36 39 eqeltrd φzranG