Metamath Proof Explorer


Theorem hgmaprnlem2N

Description: Lemma for hgmaprnN . Part 15 of Baer p. 50 line 20. We only require a subset relation, rather than equality, so that the case of zero z is taken care of automatically. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H=LHypK
hgmaprnlem1.u U=DVecHKW
hgmaprnlem1.v V=BaseU
hgmaprnlem1.r R=ScalarU
hgmaprnlem1.b B=BaseR
hgmaprnlem1.t ·˙=U
hgmaprnlem1.o 0˙=0U
hgmaprnlem1.c C=LCDualKW
hgmaprnlem1.d D=BaseC
hgmaprnlem1.p P=ScalarC
hgmaprnlem1.a A=BaseP
hgmaprnlem1.e ˙=C
hgmaprnlem1.q Q=0C
hgmaprnlem1.s S=HDMapKW
hgmaprnlem1.g G=HGMapKW
hgmaprnlem1.k φKHLWH
hgmaprnlem1.z φzA
hgmaprnlem1.t2 φtV0˙
hgmaprnlem1.s2 φsV
hgmaprnlem1.sz φSs=z˙St
hgmaprnlem1.m M=mapdKW
hgmaprnlem1.n N=LSpanU
hgmaprnlem1.l L=LSpanC
Assertion hgmaprnlem2N φNsNt

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H=LHypK
2 hgmaprnlem1.u U=DVecHKW
3 hgmaprnlem1.v V=BaseU
4 hgmaprnlem1.r R=ScalarU
5 hgmaprnlem1.b B=BaseR
6 hgmaprnlem1.t ·˙=U
7 hgmaprnlem1.o 0˙=0U
8 hgmaprnlem1.c C=LCDualKW
9 hgmaprnlem1.d D=BaseC
10 hgmaprnlem1.p P=ScalarC
11 hgmaprnlem1.a A=BaseP
12 hgmaprnlem1.e ˙=C
13 hgmaprnlem1.q Q=0C
14 hgmaprnlem1.s S=HDMapKW
15 hgmaprnlem1.g G=HGMapKW
16 hgmaprnlem1.k φKHLWH
17 hgmaprnlem1.z φzA
18 hgmaprnlem1.t2 φtV0˙
19 hgmaprnlem1.s2 φsV
20 hgmaprnlem1.sz φSs=z˙St
21 hgmaprnlem1.m M=mapdKW
22 hgmaprnlem1.n N=LSpanU
23 hgmaprnlem1.l L=LSpanC
24 1 8 16 lcdlmod φCLMod
25 18 eldifad φtV
26 1 2 3 8 9 14 16 25 hdmapcl φStD
27 10 11 9 12 23 lspsnvsi CLModzAStDLz˙StLSt
28 24 17 26 27 syl3anc φLz˙StLSt
29 1 2 3 22 8 23 21 14 16 19 hdmap10 φMNs=LSs
30 20 sneqd φSs=z˙St
31 30 fveq2d φLSs=Lz˙St
32 29 31 eqtrd φMNs=Lz˙St
33 1 2 3 22 8 23 21 14 16 25 hdmap10 φMNt=LSt
34 28 32 33 3sstr4d φMNsMNt
35 eqid LSubSpU=LSubSpU
36 1 2 16 dvhlmod φULMod
37 3 35 22 lspsncl ULModsVNsLSubSpU
38 36 19 37 syl2anc φNsLSubSpU
39 3 35 22 lspsncl ULModtVNtLSubSpU
40 36 25 39 syl2anc φNtLSubSpU
41 1 2 35 21 16 38 40 mapdord φMNsMNtNsNt
42 34 41 mpbid φNsNt