Description: Lemma for hgmaprnN . Part 15 of Baer p. 50 line 20. We only require a subset relation, rather than equality, so that the case of zero z is taken care of automatically. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hgmaprnlem1.h | |
|
hgmaprnlem1.u | |
||
hgmaprnlem1.v | |
||
hgmaprnlem1.r | |
||
hgmaprnlem1.b | |
||
hgmaprnlem1.t | |
||
hgmaprnlem1.o | |
||
hgmaprnlem1.c | |
||
hgmaprnlem1.d | |
||
hgmaprnlem1.p | |
||
hgmaprnlem1.a | |
||
hgmaprnlem1.e | |
||
hgmaprnlem1.q | |
||
hgmaprnlem1.s | |
||
hgmaprnlem1.g | |
||
hgmaprnlem1.k | |
||
hgmaprnlem1.z | |
||
hgmaprnlem1.t2 | |
||
hgmaprnlem1.s2 | |
||
hgmaprnlem1.sz | |
||
hgmaprnlem1.m | |
||
hgmaprnlem1.n | |
||
hgmaprnlem1.l | |
||
Assertion | hgmaprnlem2N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmaprnlem1.h | |
|
2 | hgmaprnlem1.u | |
|
3 | hgmaprnlem1.v | |
|
4 | hgmaprnlem1.r | |
|
5 | hgmaprnlem1.b | |
|
6 | hgmaprnlem1.t | |
|
7 | hgmaprnlem1.o | |
|
8 | hgmaprnlem1.c | |
|
9 | hgmaprnlem1.d | |
|
10 | hgmaprnlem1.p | |
|
11 | hgmaprnlem1.a | |
|
12 | hgmaprnlem1.e | |
|
13 | hgmaprnlem1.q | |
|
14 | hgmaprnlem1.s | |
|
15 | hgmaprnlem1.g | |
|
16 | hgmaprnlem1.k | |
|
17 | hgmaprnlem1.z | |
|
18 | hgmaprnlem1.t2 | |
|
19 | hgmaprnlem1.s2 | |
|
20 | hgmaprnlem1.sz | |
|
21 | hgmaprnlem1.m | |
|
22 | hgmaprnlem1.n | |
|
23 | hgmaprnlem1.l | |
|
24 | 1 8 16 | lcdlmod | |
25 | 18 | eldifad | |
26 | 1 2 3 8 9 14 16 25 | hdmapcl | |
27 | 10 11 9 12 23 | lspsnvsi | |
28 | 24 17 26 27 | syl3anc | |
29 | 1 2 3 22 8 23 21 14 16 19 | hdmap10 | |
30 | 20 | sneqd | |
31 | 30 | fveq2d | |
32 | 29 31 | eqtrd | |
33 | 1 2 3 22 8 23 21 14 16 25 | hdmap10 | |
34 | 28 32 33 | 3sstr4d | |
35 | eqid | |
|
36 | 1 2 16 | dvhlmod | |
37 | 3 35 22 | lspsncl | |
38 | 36 19 37 | syl2anc | |
39 | 3 35 22 | lspsncl | |
40 | 36 25 39 | syl2anc | |
41 | 1 2 35 21 16 38 40 | mapdord | |
42 | 34 41 | mpbid | |