Metamath Proof Explorer


Theorem hgmapval1

Description: Value of the scalar sigma map at one. (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hgmapval1.h H = LHyp K
hgmapval1.u U = DVecH K W
hgmapval1.r R = Scalar U
hgmapval1.i 1 ˙ = 1 R
hgmapval1.g G = HGMap K W
hgmapval1.k φ K HL W H
Assertion hgmapval1 φ G 1 ˙ = 1 ˙

Proof

Step Hyp Ref Expression
1 hgmapval1.h H = LHyp K
2 hgmapval1.u U = DVecH K W
3 hgmapval1.r R = Scalar U
4 hgmapval1.i 1 ˙ = 1 R
5 hgmapval1.g G = HGMap K W
6 hgmapval1.k φ K HL W H
7 eqid Base U = Base U
8 eqid 0 U = 0 U
9 1 2 7 8 6 dvh1dim φ x Base U x 0 U
10 eqid LCDual K W = LCDual K W
11 eqid Scalar LCDual K W = Scalar LCDual K W
12 eqid 1 Scalar LCDual K W = 1 Scalar LCDual K W
13 1 2 3 4 10 11 12 6 lcd1 φ 1 Scalar LCDual K W = 1 ˙
14 13 oveq1d φ 1 Scalar LCDual K W LCDual K W HDMap K W x = 1 ˙ LCDual K W HDMap K W x
15 14 3ad2ant1 φ x Base U x 0 U 1 Scalar LCDual K W LCDual K W HDMap K W x = 1 ˙ LCDual K W HDMap K W x
16 1 10 6 lcdlmod φ LCDual K W LMod
17 16 3ad2ant1 φ x Base U x 0 U LCDual K W LMod
18 eqid Base LCDual K W = Base LCDual K W
19 eqid HDMap K W = HDMap K W
20 6 3ad2ant1 φ x Base U x 0 U K HL W H
21 simp2 φ x Base U x 0 U x Base U
22 1 2 7 10 18 19 20 21 hdmapcl φ x Base U x 0 U HDMap K W x Base LCDual K W
23 eqid LCDual K W = LCDual K W
24 18 11 23 12 lmodvs1 LCDual K W LMod HDMap K W x Base LCDual K W 1 Scalar LCDual K W LCDual K W HDMap K W x = HDMap K W x
25 17 22 24 syl2anc φ x Base U x 0 U 1 Scalar LCDual K W LCDual K W HDMap K W x = HDMap K W x
26 15 25 eqtr3d φ x Base U x 0 U 1 ˙ LCDual K W HDMap K W x = HDMap K W x
27 1 2 6 dvhlmod φ U LMod
28 27 3ad2ant1 φ x Base U x 0 U U LMod
29 eqid U = U
30 7 3 29 4 lmodvs1 U LMod x Base U 1 ˙ U x = x
31 28 21 30 syl2anc φ x Base U x 0 U 1 ˙ U x = x
32 31 fveq2d φ x Base U x 0 U HDMap K W 1 ˙ U x = HDMap K W x
33 eqid Base R = Base R
34 3 lmodring U LMod R Ring
35 33 4 ringidcl R Ring 1 ˙ Base R
36 27 34 35 3syl φ 1 ˙ Base R
37 36 3ad2ant1 φ x Base U x 0 U 1 ˙ Base R
38 1 2 7 29 3 33 10 23 19 5 20 21 37 hgmapvs φ x Base U x 0 U HDMap K W 1 ˙ U x = G 1 ˙ LCDual K W HDMap K W x
39 26 32 38 3eqtr2rd φ x Base U x 0 U G 1 ˙ LCDual K W HDMap K W x = 1 ˙ LCDual K W HDMap K W x
40 eqid Base Scalar LCDual K W = Base Scalar LCDual K W
41 eqid 0 LCDual K W = 0 LCDual K W
42 1 10 6 lcdlvec φ LCDual K W LVec
43 42 3ad2ant1 φ x Base U x 0 U LCDual K W LVec
44 1 2 3 33 5 6 36 hgmapcl φ G 1 ˙ Base R
45 1 2 3 33 10 11 40 6 lcdsbase φ Base Scalar LCDual K W = Base R
46 44 45 eleqtrrd φ G 1 ˙ Base Scalar LCDual K W
47 46 3ad2ant1 φ x Base U x 0 U G 1 ˙ Base Scalar LCDual K W
48 36 45 eleqtrrd φ 1 ˙ Base Scalar LCDual K W
49 48 3ad2ant1 φ x Base U x 0 U 1 ˙ Base Scalar LCDual K W
50 simp3 φ x Base U x 0 U x 0 U
51 1 2 7 8 10 41 19 20 21 hdmapeq0 φ x Base U x 0 U HDMap K W x = 0 LCDual K W x = 0 U
52 51 necon3bid φ x Base U x 0 U HDMap K W x 0 LCDual K W x 0 U
53 50 52 mpbird φ x Base U x 0 U HDMap K W x 0 LCDual K W
54 18 23 11 40 41 43 47 49 22 53 lvecvscan2 φ x Base U x 0 U G 1 ˙ LCDual K W HDMap K W x = 1 ˙ LCDual K W HDMap K W x G 1 ˙ = 1 ˙
55 39 54 mpbid φ x Base U x 0 U G 1 ˙ = 1 ˙
56 55 rexlimdv3a φ x Base U x 0 U G 1 ˙ = 1 ˙
57 9 56 mpd φ G 1 ˙ = 1 ˙