Metamath Proof Explorer


Theorem hgt750lemg

Description: Lemma for the statement 7.50 of Helfgott p. 69. Applying a permutation T to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses hgt750lemg.f F=cRcT
hgt750lemg.t φT:0..^31-1 onto0..^3
hgt750lemg.n φN:0..^3
hgt750lemg.l φL:
hgt750lemg.1 φNR
Assertion hgt750lemg φLFN0LFN1LFN2=LN0LN1LN2

Proof

Step Hyp Ref Expression
1 hgt750lemg.f F=cRcT
2 hgt750lemg.t φT:0..^31-1 onto0..^3
3 hgt750lemg.n φN:0..^3
4 hgt750lemg.l φL:
5 hgt750lemg.1 φNR
6 2fveq3 a=TbLNa=LNTb
7 tpfi 012Fin
8 7 a1i φ012Fin
9 fzo0to3tp 0..^3=012
10 f1oeq23 0..^3=0120..^3=012T:0..^31-1 onto0..^3T:0121-1 onto012
11 9 9 10 mp2an T:0..^31-1 onto0..^3T:0121-1 onto012
12 2 11 sylib φT:0121-1 onto012
13 eqidd φb012Tb=Tb
14 4 adantr φa012L:
15 3 adantr φa012N:0..^3
16 simpr φa012a012
17 16 9 eleqtrrdi φa012a0..^3
18 15 17 ffvelcdmd φa012Na
19 14 18 ffvelcdmd φa012LNa
20 19 recnd φa012LNa
21 6 8 12 13 20 fprodf1o φa012LNa=b012LNTb
22 1 a1i φF=cRcT
23 simpr φc=Nc=N
24 23 coeq1d φc=NcT=NT
25 f1of T:0..^31-1 onto0..^3T:0..^30..^3
26 2 25 syl φT:0..^30..^3
27 ovexd φ0..^3V
28 26 27 fexd φTV
29 coexg NRTVNTV
30 5 28 29 syl2anc φNTV
31 22 24 5 30 fvmptd φFN=NT
32 31 adantr φb012FN=NT
33 32 fveq1d φb012FNb=NTb
34 f1ofun T:0..^31-1 onto0..^3FunT
35 2 34 syl φFunT
36 35 adantr φb012FunT
37 f1odm T:0121-1 onto012domT=012
38 12 37 syl φdomT=012
39 38 eleq2d φbdomTb012
40 39 biimpar φb012bdomT
41 fvco FunTbdomTNTb=NTb
42 36 40 41 syl2anc φb012NTb=NTb
43 33 42 eqtr2d φb012NTb=FNb
44 43 fveq2d φb012LNTb=LFNb
45 44 prodeq2dv φb012LNTb=b012LFNb
46 21 45 eqtr2d φb012LFNb=a012LNa
47 2fveq3 b=0LFNb=LFN0
48 2fveq3 b=1LFNb=LFN1
49 c0ex 0V
50 49 a1i φ0V
51 1ex 1V
52 51 a1i φ1V
53 31 fveq1d φFN0=NT0
54 49 tpid1 0012
55 54 38 eleqtrrid φ0domT
56 fvco FunT0domTNT0=NT0
57 35 55 56 syl2anc φNT0=NT0
58 53 57 eqtrd φFN0=NT0
59 54 9 eleqtrri 00..^3
60 59 a1i φ00..^3
61 26 60 ffvelcdmd φT00..^3
62 3 61 ffvelcdmd φNT0
63 58 62 eqeltrd φFN0
64 4 63 ffvelcdmd φLFN0
65 64 recnd φLFN0
66 31 fveq1d φFN1=NT1
67 51 tpid2 1012
68 67 38 eleqtrrid φ1domT
69 fvco FunT1domTNT1=NT1
70 35 68 69 syl2anc φNT1=NT1
71 66 70 eqtrd φFN1=NT1
72 67 9 eleqtrri 10..^3
73 72 a1i φ10..^3
74 26 73 ffvelcdmd φT10..^3
75 3 74 ffvelcdmd φNT1
76 71 75 eqeltrd φFN1
77 4 76 ffvelcdmd φLFN1
78 77 recnd φLFN1
79 0ne1 01
80 79 a1i φ01
81 2fveq3 b=2LFNb=LFN2
82 2ex 2V
83 82 a1i φ2V
84 31 fveq1d φFN2=NT2
85 82 tpid3 2012
86 85 38 eleqtrrid φ2domT
87 fvco FunT2domTNT2=NT2
88 35 86 87 syl2anc φNT2=NT2
89 84 88 eqtrd φFN2=NT2
90 85 9 eleqtrri 20..^3
91 90 a1i φ20..^3
92 26 91 ffvelcdmd φT20..^3
93 3 92 ffvelcdmd φNT2
94 89 93 eqeltrd φFN2
95 4 94 ffvelcdmd φLFN2
96 95 recnd φLFN2
97 0ne2 02
98 97 a1i φ02
99 1ne2 12
100 99 a1i φ12
101 47 48 50 52 65 78 80 81 83 96 98 100 prodtp φb012LFNb=LFN0LFN1LFN2
102 2fveq3 a=0LNa=LN0
103 2fveq3 a=1LNa=LN1
104 3 60 ffvelcdmd φN0
105 4 104 ffvelcdmd φLN0
106 105 recnd φLN0
107 3 73 ffvelcdmd φN1
108 4 107 ffvelcdmd φLN1
109 108 recnd φLN1
110 2fveq3 a=2LNa=LN2
111 3 91 ffvelcdmd φN2
112 4 111 ffvelcdmd φLN2
113 112 recnd φLN2
114 102 103 50 52 106 109 80 110 83 113 98 100 prodtp φa012LNa=LN0LN1LN2
115 46 101 114 3eqtr3d φLFN0LFN1LFN2=LN0LN1LN2
116 65 78 96 mulassd φLFN0LFN1LFN2=LFN0LFN1LFN2
117 106 109 113 mulassd φLN0LN1LN2=LN0LN1LN2
118 115 116 117 3eqtr3d φLFN0LFN1LFN2=LN0LN1LN2