| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlrelat2.b |
|
| 2 |
|
hlrelat2.l |
|
| 3 |
|
hlrelat2.a |
|
| 4 |
|
hllat |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
1 2 5 6
|
latnlemlt |
|
| 8 |
4 7
|
syl3an1 |
|
| 9 |
|
simp1 |
|
| 10 |
1 6
|
latmcl |
|
| 11 |
4 10
|
syl3an1 |
|
| 12 |
|
simp2 |
|
| 13 |
|
eqid |
|
| 14 |
1 2 5 13 3
|
hlrelat |
|
| 15 |
14
|
ex |
|
| 16 |
9 11 12 15
|
syl3anc |
|
| 17 |
|
simpl1 |
|
| 18 |
17
|
hllatd |
|
| 19 |
11
|
adantr |
|
| 20 |
1 3
|
atbase |
|
| 21 |
20
|
adantl |
|
| 22 |
|
simpl2 |
|
| 23 |
1 2 13
|
latjle12 |
|
| 24 |
18 19 21 22 23
|
syl13anc |
|
| 25 |
|
simpr |
|
| 26 |
24 25
|
biimtrrdi |
|
| 27 |
26
|
adantld |
|
| 28 |
|
simpl3 |
|
| 29 |
1 2 6
|
latlem12 |
|
| 30 |
18 21 22 28 29
|
syl13anc |
|
| 31 |
30
|
notbid |
|
| 32 |
1 2 5 13
|
latnle |
|
| 33 |
18 19 21 32
|
syl3anc |
|
| 34 |
31 33
|
bitrd |
|
| 35 |
34 24
|
anbi12d |
|
| 36 |
|
pm3.21 |
|
| 37 |
|
orcom |
|
| 38 |
|
pm4.55 |
|
| 39 |
|
imor |
|
| 40 |
37 38 39
|
3bitr4ri |
|
| 41 |
36 40
|
sylib |
|
| 42 |
41
|
con2i |
|
| 43 |
42
|
adantrl |
|
| 44 |
35 43
|
biimtrrdi |
|
| 45 |
27 44
|
jcad |
|
| 46 |
45
|
reximdva |
|
| 47 |
16 46
|
syld |
|
| 48 |
8 47
|
sylbid |
|
| 49 |
1 2
|
lattr |
|
| 50 |
18 21 22 28 49
|
syl13anc |
|
| 51 |
50
|
exp4b |
|
| 52 |
51
|
com34 |
|
| 53 |
52
|
com23 |
|
| 54 |
53
|
ralrimdv |
|
| 55 |
|
iman |
|
| 56 |
55
|
ralbii |
|
| 57 |
|
ralnex |
|
| 58 |
56 57
|
bitri |
|
| 59 |
54 58
|
imbitrdi |
|
| 60 |
59
|
con2d |
|
| 61 |
48 60
|
impbid |
|