| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgcnlem.r |
|
| 2 |
|
itgcnlem.s |
|
| 3 |
|
itgcnlem.t |
|
| 4 |
|
itgcnlem.u |
|
| 5 |
|
itgcnlem.v |
|
| 6 |
|
iblmbf |
|
| 7 |
6
|
a1i |
|
| 8 |
|
simp1 |
|
| 9 |
8
|
a1i |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
0cn |
|
| 15 |
14
|
elimel |
|
| 16 |
15
|
a1i |
|
| 17 |
10 11 12 13 16
|
iblcnlem1 |
|
| 18 |
17
|
adantr |
|
| 19 |
|
eqid |
|
| 20 |
|
mbff |
|
| 21 |
|
eqid |
|
| 22 |
21 5
|
dmmptd |
|
| 23 |
22
|
feq2d |
|
| 24 |
23
|
biimpa |
|
| 25 |
20 24
|
sylan2 |
|
| 26 |
21
|
fmpt |
|
| 27 |
25 26
|
sylibr |
|
| 28 |
|
iftrue |
|
| 29 |
28
|
ralimi |
|
| 30 |
27 29
|
syl |
|
| 31 |
|
mpteq12 |
|
| 32 |
19 30 31
|
sylancr |
|
| 33 |
32
|
eleq1d |
|
| 34 |
32
|
eleq1d |
|
| 35 |
|
eqid |
|
| 36 |
28
|
imim2i |
|
| 37 |
36
|
imp |
|
| 38 |
37
|
fveq2d |
|
| 39 |
38
|
ibllem |
|
| 40 |
39
|
a1d |
|
| 41 |
40
|
ralimi2 |
|
| 42 |
27 41
|
syl |
|
| 43 |
|
mpteq12 |
|
| 44 |
35 42 43
|
sylancr |
|
| 45 |
44
|
fveq2d |
|
| 46 |
45 1
|
eqtr4di |
|
| 47 |
46
|
eleq1d |
|
| 48 |
38
|
negeqd |
|
| 49 |
48
|
ibllem |
|
| 50 |
49
|
a1d |
|
| 51 |
50
|
ralimi2 |
|
| 52 |
27 51
|
syl |
|
| 53 |
|
mpteq12 |
|
| 54 |
35 52 53
|
sylancr |
|
| 55 |
54
|
fveq2d |
|
| 56 |
55 2
|
eqtr4di |
|
| 57 |
56
|
eleq1d |
|
| 58 |
47 57
|
anbi12d |
|
| 59 |
37
|
fveq2d |
|
| 60 |
59
|
ibllem |
|
| 61 |
60
|
a1d |
|
| 62 |
61
|
ralimi2 |
|
| 63 |
27 62
|
syl |
|
| 64 |
|
mpteq12 |
|
| 65 |
35 63 64
|
sylancr |
|
| 66 |
65
|
fveq2d |
|
| 67 |
66 3
|
eqtr4di |
|
| 68 |
67
|
eleq1d |
|
| 69 |
59
|
negeqd |
|
| 70 |
69
|
ibllem |
|
| 71 |
70
|
a1d |
|
| 72 |
71
|
ralimi2 |
|
| 73 |
27 72
|
syl |
|
| 74 |
|
mpteq12 |
|
| 75 |
35 73 74
|
sylancr |
|
| 76 |
75
|
fveq2d |
|
| 77 |
76 4
|
eqtr4di |
|
| 78 |
77
|
eleq1d |
|
| 79 |
68 78
|
anbi12d |
|
| 80 |
34 58 79
|
3anbi123d |
|
| 81 |
18 33 80
|
3bitr3d |
|
| 82 |
81
|
ex |
|
| 83 |
7 9 82
|
pm5.21ndd |
|