Description: The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccdificc.a | |
|
iccdificc.b | |
||
iccdificc.c | |
||
iccdificc.4 | |
||
Assertion | iccdificc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccdificc.a | |
|
2 | iccdificc.b | |
|
3 | iccdificc.c | |
|
4 | iccdificc.4 | |
|
5 | 2 | adantr | |
6 | 3 | adantr | |
7 | iccssxr | |
|
8 | eldifi | |
|
9 | 7 8 | sselid | |
10 | 9 | adantl | |
11 | 1 | ad2antrr | |
12 | 5 | adantr | |
13 | 10 | adantr | |
14 | 1 | adantr | |
15 | 8 | adantl | |
16 | iccgelb | |
|
17 | 14 6 15 16 | syl3anc | |
18 | 17 | adantr | |
19 | simpr | |
|
20 | 10 5 | xrlenltd | |
21 | 20 | adantr | |
22 | 19 21 | mpbird | |
23 | 11 12 13 18 22 | eliccxrd | |
24 | eldifn | |
|
25 | 24 | ad2antlr | |
26 | 23 25 | condan | |
27 | iccleub | |
|
28 | 14 6 15 27 | syl3anc | |
29 | 5 6 10 26 28 | eliocd | |
30 | 29 | ralrimiva | |
31 | dfss3 | |
|
32 | 30 31 | sylibr | |
33 | 1 | adantr | |
34 | 3 | adantr | |
35 | iocssxr | |
|
36 | id | |
|
37 | 35 36 | sselid | |
38 | 37 | adantl | |
39 | 2 | adantr | |
40 | 4 | adantr | |
41 | simpr | |
|
42 | iocgtlb | |
|
43 | 39 34 41 42 | syl3anc | |
44 | 33 39 38 40 43 | xrlelttrd | |
45 | 33 38 44 | xrltled | |
46 | iocleub | |
|
47 | 39 34 41 46 | syl3anc | |
48 | 33 34 38 45 47 | eliccxrd | |
49 | 33 39 38 43 | xrgtnelicc | |
50 | 48 49 | eldifd | |
51 | 32 50 | eqelssd | |