Description: A left-closed right-open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | icoopn.a | |
|
icoopn.c | |
||
icoopn.b | |
||
icoopn.k | |
||
icoopn.j | |
||
icoopn.cleb | |
||
Assertion | icoopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoopn.a | |
|
2 | icoopn.c | |
|
3 | icoopn.b | |
|
4 | icoopn.k | |
|
5 | icoopn.j | |
|
6 | icoopn.cleb | |
|
7 | retop | |
|
8 | 4 7 | eqeltri | |
9 | 8 | a1i | |
10 | ovexd | |
|
11 | iooretop | |
|
12 | 11 4 | eleqtrri | |
13 | 12 | a1i | |
14 | elrestr | |
|
15 | 9 10 13 14 | syl3anc | |
16 | 1 | rexrd | |
17 | 16 | adantr | |
18 | 2 | adantr | |
19 | elinel1 | |
|
20 | elioore | |
|
21 | 19 20 | syl | |
22 | 21 | rexrd | |
23 | 22 | adantl | |
24 | 3 | adantr | |
25 | elinel2 | |
|
26 | 25 | adantl | |
27 | icogelb | |
|
28 | 17 24 26 27 | syl3anc | |
29 | mnfxr | |
|
30 | 29 | a1i | |
31 | 19 | adantl | |
32 | iooltub | |
|
33 | 30 18 31 32 | syl3anc | |
34 | 17 18 23 28 33 | elicod | |
35 | 29 | a1i | |
36 | 2 | adantr | |
37 | icossre | |
|
38 | 1 2 37 | syl2anc | |
39 | 38 | sselda | |
40 | 39 | mnfltd | |
41 | 16 | adantr | |
42 | simpr | |
|
43 | icoltub | |
|
44 | 41 36 42 43 | syl3anc | |
45 | 35 36 39 40 44 | eliood | |
46 | 3 | adantr | |
47 | 39 | rexrd | |
48 | icogelb | |
|
49 | 41 36 42 48 | syl3anc | |
50 | 6 | adantr | |
51 | 47 36 46 44 50 | xrltletrd | |
52 | 41 46 47 49 51 | elicod | |
53 | 45 52 | elind | |
54 | 34 53 | impbida | |
55 | 54 | eqrdv | |
56 | 5 | eqcomi | |
57 | 56 | a1i | |
58 | 15 55 57 | 3eltr3d | |