| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icoopn.a |  | 
						
							| 2 |  | icoopn.c |  | 
						
							| 3 |  | icoopn.b |  | 
						
							| 4 |  | icoopn.k |  | 
						
							| 5 |  | icoopn.j |  | 
						
							| 6 |  | icoopn.cleb |  | 
						
							| 7 |  | retop |  | 
						
							| 8 | 4 7 | eqeltri |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 |  | ovexd |  | 
						
							| 11 |  | iooretop |  | 
						
							| 12 | 11 4 | eleqtrri |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 |  | elrestr |  | 
						
							| 15 | 9 10 13 14 | syl3anc |  | 
						
							| 16 | 1 | rexrd |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 2 | adantr |  | 
						
							| 19 |  | elinel1 |  | 
						
							| 20 |  | elioore |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 21 | rexrd |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 3 | adantr |  | 
						
							| 25 |  | elinel2 |  | 
						
							| 26 | 25 | adantl |  | 
						
							| 27 |  | icogelb |  | 
						
							| 28 | 17 24 26 27 | syl3anc |  | 
						
							| 29 |  | mnfxr |  | 
						
							| 30 | 29 | a1i |  | 
						
							| 31 | 19 | adantl |  | 
						
							| 32 |  | iooltub |  | 
						
							| 33 | 30 18 31 32 | syl3anc |  | 
						
							| 34 | 17 18 23 28 33 | elicod |  | 
						
							| 35 | 29 | a1i |  | 
						
							| 36 | 2 | adantr |  | 
						
							| 37 |  | icossre |  | 
						
							| 38 | 1 2 37 | syl2anc |  | 
						
							| 39 | 38 | sselda |  | 
						
							| 40 | 39 | mnfltd |  | 
						
							| 41 | 16 | adantr |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 |  | icoltub |  | 
						
							| 44 | 41 36 42 43 | syl3anc |  | 
						
							| 45 | 35 36 39 40 44 | eliood |  | 
						
							| 46 | 3 | adantr |  | 
						
							| 47 | 39 | rexrd |  | 
						
							| 48 |  | icogelb |  | 
						
							| 49 | 41 36 42 48 | syl3anc |  | 
						
							| 50 | 6 | adantr |  | 
						
							| 51 | 47 36 46 44 50 | xrltletrd |  | 
						
							| 52 | 41 46 47 49 51 | elicod |  | 
						
							| 53 | 45 52 | elind |  | 
						
							| 54 | 34 53 | impbida |  | 
						
							| 55 | 54 | eqrdv |  | 
						
							| 56 | 5 | eqcomi |  | 
						
							| 57 | 56 | a1i |  | 
						
							| 58 | 15 55 57 | 3eltr3d |  |