Metamath Proof Explorer


Theorem imo72b2lem1

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem1.1 φF:
imo72b2lem1.7 φxFx0
imo72b2lem1.6 φyFy1
Assertion imo72b2lem1 φ0<supabsF<

Proof

Step Hyp Ref Expression
1 imo72b2lem1.1 φF:
2 imo72b2lem1.7 φxFx0
3 imo72b2lem1.6 φyFy1
4 imaco absF=absF
5 imassrn absFranabsF
6 absf abs:
7 6 a1i φabs:
8 ax-resscn
9 8 a1i φ
10 7 9 fssresd φabs:
11 1 10 fco2d φabsF:
12 11 frnd φranabsF
13 5 12 sstrid φabsF
14 4 13 eqsstrrid φabsF
15 0re 0
16 15 ne0ii
17 16 a1i φ
18 17 11 wnefimgd φabsF
19 4 18 eqnetrrid φabsF
20 1red φ1
21 simpr φc=1c=1
22 21 breq2d φc=1tct1
23 22 ralbidv φc=1tabsFtctabsFt1
24 1 3 extoimad φtabsFt1
25 20 23 24 rspcedvd φctabsFtc
26 0red φ0
27 1 adantr φxFx0F:
28 simprl φxFx0x
29 27 28 fvco3d φxFx0absFx=Fx
30 11 funfvima2d φxabsFxabsF
31 30 adantrr φxFx0absFxabsF
32 31 4 eleqtrdi φxFx0absFxabsF
33 29 32 eqeltrrd φxFx0FxabsF
34 simpr φxFx0z=Fxz=Fx
35 34 breq2d φxFx0z=Fx0<z0<Fx
36 1 ffvelcdmda φxFx
37 36 adantrr φxFx0Fx
38 37 recnd φxFx0Fx
39 simprr φxFx0Fx0
40 38 39 absrpcld φxFx0Fx+
41 40 rpgt0d φxFx00<Fx
42 33 35 41 rspcedvd φxFx0zabsF0<z
43 2 42 rexlimddv φzabsF0<z
44 14 19 25 26 43 suprlubrd φ0<supabsF<