Metamath Proof Explorer


Theorem indexdom

Description: If for every element of an indexing set A there exists a corresponding element of another set B , then there exists a subset of B consisting only of those elements which are indexed by A , and which is dominated by the set A . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion indexdom A M x A y B φ c c A c B x A y c φ y c x A φ

Proof

Step Hyp Ref Expression
1 nfsbc1v y [˙ f x / y]˙ φ
2 sbceq1a y = f x φ [˙ f x / y]˙ φ
3 1 2 ac6gf A M x A y B φ f f : A B x A [˙ f x / y]˙ φ
4 fdm f : A B dom f = A
5 vex f V
6 5 dmex dom f V
7 4 6 eqeltrrdi f : A B A V
8 ffn f : A B f Fn A
9 fnrndomg A V f Fn A ran f A
10 7 8 9 sylc f : A B ran f A
11 10 adantr f : A B x A [˙ f x / y]˙ φ ran f A
12 frn f : A B ran f B
13 12 adantr f : A B x A [˙ f x / y]˙ φ ran f B
14 nfv x f : A B
15 nfra1 x x A [˙ f x / y]˙ φ
16 14 15 nfan x f : A B x A [˙ f x / y]˙ φ
17 ffun f : A B Fun f
18 17 adantr f : A B x A Fun f
19 4 eleq2d f : A B x dom f x A
20 19 biimpar f : A B x A x dom f
21 fvelrn Fun f x dom f f x ran f
22 18 20 21 syl2anc f : A B x A f x ran f
23 22 adantlr f : A B x A [˙ f x / y]˙ φ x A f x ran f
24 rspa x A [˙ f x / y]˙ φ x A [˙ f x / y]˙ φ
25 24 adantll f : A B x A [˙ f x / y]˙ φ x A [˙ f x / y]˙ φ
26 rspesbca f x ran f [˙ f x / y]˙ φ y ran f φ
27 23 25 26 syl2anc f : A B x A [˙ f x / y]˙ φ x A y ran f φ
28 27 ex f : A B x A [˙ f x / y]˙ φ x A y ran f φ
29 16 28 ralrimi f : A B x A [˙ f x / y]˙ φ x A y ran f φ
30 nfv y f : A B
31 nfcv _ y A
32 31 1 nfralw y x A [˙ f x / y]˙ φ
33 30 32 nfan y f : A B x A [˙ f x / y]˙ φ
34 fvelrnb f Fn A y ran f x A f x = y
35 8 34 syl f : A B y ran f x A f x = y
36 35 adantr f : A B x A [˙ f x / y]˙ φ y ran f x A f x = y
37 rsp x A [˙ f x / y]˙ φ x A [˙ f x / y]˙ φ
38 37 adantl f : A B x A [˙ f x / y]˙ φ x A [˙ f x / y]˙ φ
39 2 eqcoms f x = y φ [˙ f x / y]˙ φ
40 39 biimprcd [˙ f x / y]˙ φ f x = y φ
41 38 40 syl6 f : A B x A [˙ f x / y]˙ φ x A f x = y φ
42 16 41 reximdai f : A B x A [˙ f x / y]˙ φ x A f x = y x A φ
43 36 42 sylbid f : A B x A [˙ f x / y]˙ φ y ran f x A φ
44 33 43 ralrimi f : A B x A [˙ f x / y]˙ φ y ran f x A φ
45 5 rnex ran f V
46 breq1 c = ran f c A ran f A
47 sseq1 c = ran f c B ran f B
48 46 47 anbi12d c = ran f c A c B ran f A ran f B
49 rexeq c = ran f y c φ y ran f φ
50 49 ralbidv c = ran f x A y c φ x A y ran f φ
51 raleq c = ran f y c x A φ y ran f x A φ
52 50 51 anbi12d c = ran f x A y c φ y c x A φ x A y ran f φ y ran f x A φ
53 48 52 anbi12d c = ran f c A c B x A y c φ y c x A φ ran f A ran f B x A y ran f φ y ran f x A φ
54 45 53 spcev ran f A ran f B x A y ran f φ y ran f x A φ c c A c B x A y c φ y c x A φ
55 11 13 29 44 54 syl22anc f : A B x A [˙ f x / y]˙ φ c c A c B x A y c φ y c x A φ
56 55 exlimiv f f : A B x A [˙ f x / y]˙ φ c c A c B x A y c φ y c x A φ
57 3 56 syl A M x A y B φ c c A c B x A y c φ y c x A φ