Metamath Proof Explorer


Theorem indsumin

Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses indsumin.1 φOV
indsumin.2 φAFin
indsumin.3 φAO
indsumin.4 φBO
indsumin.5 φkAC
Assertion indsumin φkA𝟙OBkC=kABC

Proof

Step Hyp Ref Expression
1 indsumin.1 φOV
2 indsumin.2 φAFin
3 indsumin.3 φAO
4 indsumin.4 φBO
5 indsumin.5 φkAC
6 inindif ABAB=
7 6 a1i φABAB=
8 inundif ABAB=A
9 8 eqcomi A=ABAB
10 9 a1i φA=ABAB
11 pr01ssre 01
12 ax-resscn
13 11 12 sstri 01
14 indf OVBO𝟙OB:O01
15 1 4 14 syl2anc φ𝟙OB:O01
16 15 adantr φkA𝟙OB:O01
17 3 sselda φkAkO
18 16 17 ffvelcdmd φkA𝟙OBk01
19 13 18 sselid φkA𝟙OBk
20 19 5 mulcld φkA𝟙OBkC
21 7 10 2 20 fsumsplit φkA𝟙OBkC=kAB𝟙OBkC+kAB𝟙OBkC
22 1 adantr φkABOV
23 4 adantr φkABBO
24 inss2 ABB
25 24 a1i φABB
26 25 sselda φkABkB
27 ind1 OVBOkB𝟙OBk=1
28 22 23 26 27 syl3anc φkAB𝟙OBk=1
29 28 oveq1d φkAB𝟙OBkC=1C
30 inss1 ABA
31 30 a1i φABA
32 31 sselda φkABkA
33 32 5 syldan φkABC
34 33 mullidd φkAB1C=C
35 29 34 eqtrd φkAB𝟙OBkC=C
36 35 sumeq2dv φkAB𝟙OBkC=kABC
37 1 adantr φkABOV
38 4 adantr φkABBO
39 3 ssdifd φABOB
40 39 sselda φkABkOB
41 ind0 OVBOkOB𝟙OBk=0
42 37 38 40 41 syl3anc φkAB𝟙OBk=0
43 42 oveq1d φkAB𝟙OBkC=0C
44 difssd φABA
45 44 sselda φkABkA
46 45 5 syldan φkABC
47 46 mul02d φkAB0C=0
48 43 47 eqtrd φkAB𝟙OBkC=0
49 48 sumeq2dv φkAB𝟙OBkC=kAB0
50 diffi AFinABFin
51 2 50 syl φABFin
52 sumz AB0ABFinkAB0=0
53 52 olcs ABFinkAB0=0
54 51 53 syl φkAB0=0
55 49 54 eqtrd φkAB𝟙OBkC=0
56 36 55 oveq12d φkAB𝟙OBkC+kAB𝟙OBkC=kABC+0
57 infi AFinABFin
58 2 57 syl φABFin
59 58 33 fsumcl φkABC
60 59 addridd φkABC+0=kABC
61 21 56 60 3eqtrd φkA𝟙OBkC=kABC