Metamath Proof Explorer


Theorem infxpenc2

Description: Existence form of infxpenc . A "uniform" or "canonical" version of infxpen , asserting the existence of a single function g that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion infxpenc2 A On g b A ω b g b : b × b 1-1 onto b

Proof

Step Hyp Ref Expression
1 cnfcom3c A On n x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y
2 df-2o 2 𝑜 = suc 1 𝑜
3 2 oveq2i ω 𝑜 2 𝑜 = ω 𝑜 suc 1 𝑜
4 omelon ω On
5 1on 1 𝑜 On
6 oesuc ω On 1 𝑜 On ω 𝑜 suc 1 𝑜 = ω 𝑜 1 𝑜 𝑜 ω
7 4 5 6 mp2an ω 𝑜 suc 1 𝑜 = ω 𝑜 1 𝑜 𝑜 ω
8 oe1 ω On ω 𝑜 1 𝑜 = ω
9 4 8 ax-mp ω 𝑜 1 𝑜 = ω
10 9 oveq1i ω 𝑜 1 𝑜 𝑜 ω = ω 𝑜 ω
11 3 7 10 3eqtri ω 𝑜 2 𝑜 = ω 𝑜 ω
12 omxpen ω On ω On ω 𝑜 ω ω × ω
13 4 4 12 mp2an ω 𝑜 ω ω × ω
14 11 13 eqbrtri ω 𝑜 2 𝑜 ω × ω
15 xpomen ω × ω ω
16 14 15 entri ω 𝑜 2 𝑜 ω
17 16 a1i A On ω 𝑜 2 𝑜 ω
18 bren ω 𝑜 2 𝑜 ω f f : ω 𝑜 2 𝑜 1-1 onto ω
19 17 18 sylib A On f f : ω 𝑜 2 𝑜 1-1 onto ω
20 exdistrv n f x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω n x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f f : ω 𝑜 2 𝑜 1-1 onto ω
21 simpl A On x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω A On
22 simprl A On x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y
23 sseq2 x = b ω x ω b
24 oveq2 y = w ω 𝑜 y = ω 𝑜 w
25 24 f1oeq3d y = w n x : x 1-1 onto ω 𝑜 y n x : x 1-1 onto ω 𝑜 w
26 25 cbvrexvw y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y w On 1 𝑜 n x : x 1-1 onto ω 𝑜 w
27 fveq2 x = b n x = n b
28 27 f1oeq1d x = b n x : x 1-1 onto ω 𝑜 w n b : x 1-1 onto ω 𝑜 w
29 f1oeq2 x = b n b : x 1-1 onto ω 𝑜 w n b : b 1-1 onto ω 𝑜 w
30 28 29 bitrd x = b n x : x 1-1 onto ω 𝑜 w n b : b 1-1 onto ω 𝑜 w
31 30 rexbidv x = b w On 1 𝑜 n x : x 1-1 onto ω 𝑜 w w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
32 26 31 bitrid x = b y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
33 23 32 imbi12d x = b ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
34 33 cbvralvw x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
35 22 34 sylib A On x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
36 oveq2 b = z ω 𝑜 b = ω 𝑜 z
37 36 cbvmptv b On 1 𝑜 ω 𝑜 b = z On 1 𝑜 ω 𝑜 z
38 37 cnveqi b On 1 𝑜 ω 𝑜 b -1 = z On 1 𝑜 ω 𝑜 z -1
39 38 fveq1i b On 1 𝑜 ω 𝑜 b -1 ran n b = z On 1 𝑜 ω 𝑜 z -1 ran n b
40 2on 2 𝑜 On
41 peano1 ω
42 oen0 ω On 2 𝑜 On ω ω 𝑜 2 𝑜
43 41 42 mpan2 ω On 2 𝑜 On ω 𝑜 2 𝑜
44 4 40 43 mp2an ω 𝑜 2 𝑜
45 eqid f I ω 𝑜 2 𝑜 f -1 f -1 f -1 = f I ω 𝑜 2 𝑜 f -1 f -1 f -1
46 45 fveqf1o f : ω 𝑜 2 𝑜 1-1 onto ω ω 𝑜 2 𝑜 ω f I ω 𝑜 2 𝑜 f -1 f -1 f -1 : ω 𝑜 2 𝑜 1-1 onto ω f I ω 𝑜 2 𝑜 f -1 f -1 f -1 =
47 44 41 46 mp3an23 f : ω 𝑜 2 𝑜 1-1 onto ω f I ω 𝑜 2 𝑜 f -1 f -1 f -1 : ω 𝑜 2 𝑜 1-1 onto ω f I ω 𝑜 2 𝑜 f -1 f -1 f -1 =
48 47 ad2antll A On x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω f I ω 𝑜 2 𝑜 f -1 f -1 f -1 : ω 𝑜 2 𝑜 1-1 onto ω f I ω 𝑜 2 𝑜 f -1 f -1 f -1 =
49 48 simpld A On x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω f I ω 𝑜 2 𝑜 f -1 f -1 f -1 : ω 𝑜 2 𝑜 1-1 onto ω
50 48 simprd A On x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω f I ω 𝑜 2 𝑜 f -1 f -1 f -1 =
51 21 35 39 49 50 infxpenc2lem3 A On x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω g b A ω b g b : b × b 1-1 onto b
52 51 ex A On x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω g b A ω b g b : b × b 1-1 onto b
53 52 exlimdvv A On n f x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f : ω 𝑜 2 𝑜 1-1 onto ω g b A ω b g b : b × b 1-1 onto b
54 20 53 syl5bir A On n x A ω x y On 1 𝑜 n x : x 1-1 onto ω 𝑜 y f f : ω 𝑜 2 𝑜 1-1 onto ω g b A ω b g b : b × b 1-1 onto b
55 1 19 54 mp2and A On g b A ω b g b : b × b 1-1 onto b