Description: Existence form of infxpenc . A "uniform" or "canonical" version of infxpen , asserting the existence of a single function g that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | infxpenc2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfcom3c | |
|
2 | df-2o | |
|
3 | 2 | oveq2i | |
4 | omelon | |
|
5 | 1on | |
|
6 | oesuc | |
|
7 | 4 5 6 | mp2an | |
8 | oe1 | |
|
9 | 4 8 | ax-mp | |
10 | 9 | oveq1i | |
11 | 3 7 10 | 3eqtri | |
12 | omxpen | |
|
13 | 4 4 12 | mp2an | |
14 | 11 13 | eqbrtri | |
15 | xpomen | |
|
16 | 14 15 | entri | |
17 | 16 | a1i | |
18 | bren | |
|
19 | 17 18 | sylib | |
20 | exdistrv | |
|
21 | simpl | |
|
22 | simprl | |
|
23 | sseq2 | |
|
24 | oveq2 | |
|
25 | 24 | f1oeq3d | |
26 | 25 | cbvrexvw | |
27 | fveq2 | |
|
28 | 27 | f1oeq1d | |
29 | f1oeq2 | |
|
30 | 28 29 | bitrd | |
31 | 30 | rexbidv | |
32 | 26 31 | bitrid | |
33 | 23 32 | imbi12d | |
34 | 33 | cbvralvw | |
35 | 22 34 | sylib | |
36 | oveq2 | |
|
37 | 36 | cbvmptv | |
38 | 37 | cnveqi | |
39 | 38 | fveq1i | |
40 | 2on | |
|
41 | peano1 | |
|
42 | oen0 | |
|
43 | 41 42 | mpan2 | |
44 | 4 40 43 | mp2an | |
45 | eqid | |
|
46 | 45 | fveqf1o | |
47 | 44 41 46 | mp3an23 | |
48 | 47 | ad2antll | |
49 | 48 | simpld | |
50 | 48 | simprd | |
51 | 21 35 39 49 50 | infxpenc2lem3 | |
52 | 51 | ex | |
53 | 52 | exlimdvv | |
54 | 20 53 | biimtrrid | |
55 | 1 19 54 | mp2and | |