Metamath Proof Explorer


Theorem infxpenc2

Description: Existence form of infxpenc . A "uniform" or "canonical" version of infxpen , asserting the existence of a single function g that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion infxpenc2 AOngbAωbgb:b×b1-1 ontob

Proof

Step Hyp Ref Expression
1 cnfcom3c AOnnxAωxyOn1𝑜nx:x1-1 ontoω𝑜y
2 df-2o 2𝑜=suc1𝑜
3 2 oveq2i ω𝑜2𝑜=ω𝑜suc1𝑜
4 omelon ωOn
5 1on 1𝑜On
6 oesuc ωOn1𝑜Onω𝑜suc1𝑜=ω𝑜1𝑜𝑜ω
7 4 5 6 mp2an ω𝑜suc1𝑜=ω𝑜1𝑜𝑜ω
8 oe1 ωOnω𝑜1𝑜=ω
9 4 8 ax-mp ω𝑜1𝑜=ω
10 9 oveq1i ω𝑜1𝑜𝑜ω=ω𝑜ω
11 3 7 10 3eqtri ω𝑜2𝑜=ω𝑜ω
12 omxpen ωOnωOnω𝑜ωω×ω
13 4 4 12 mp2an ω𝑜ωω×ω
14 11 13 eqbrtri ω𝑜2𝑜ω×ω
15 xpomen ω×ωω
16 14 15 entri ω𝑜2𝑜ω
17 16 a1i AOnω𝑜2𝑜ω
18 bren ω𝑜2𝑜ωff:ω𝑜2𝑜1-1 ontoω
19 17 18 sylib AOnff:ω𝑜2𝑜1-1 ontoω
20 exdistrv nfxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yff:ω𝑜2𝑜1-1 ontoω
21 simpl AOnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωAOn
22 simprl AOnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωxAωxyOn1𝑜nx:x1-1 ontoω𝑜y
23 sseq2 x=bωxωb
24 oveq2 y=wω𝑜y=ω𝑜w
25 24 f1oeq3d y=wnx:x1-1 ontoω𝑜ynx:x1-1 ontoω𝑜w
26 25 cbvrexvw yOn1𝑜nx:x1-1 ontoω𝑜ywOn1𝑜nx:x1-1 ontoω𝑜w
27 fveq2 x=bnx=nb
28 27 f1oeq1d x=bnx:x1-1 ontoω𝑜wnb:x1-1 ontoω𝑜w
29 f1oeq2 x=bnb:x1-1 ontoω𝑜wnb:b1-1 ontoω𝑜w
30 28 29 bitrd x=bnx:x1-1 ontoω𝑜wnb:b1-1 ontoω𝑜w
31 30 rexbidv x=bwOn1𝑜nx:x1-1 ontoω𝑜wwOn1𝑜nb:b1-1 ontoω𝑜w
32 26 31 bitrid x=byOn1𝑜nx:x1-1 ontoω𝑜ywOn1𝑜nb:b1-1 ontoω𝑜w
33 23 32 imbi12d x=bωxyOn1𝑜nx:x1-1 ontoω𝑜yωbwOn1𝑜nb:b1-1 ontoω𝑜w
34 33 cbvralvw xAωxyOn1𝑜nx:x1-1 ontoω𝑜ybAωbwOn1𝑜nb:b1-1 ontoω𝑜w
35 22 34 sylib AOnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωbAωbwOn1𝑜nb:b1-1 ontoω𝑜w
36 oveq2 b=zω𝑜b=ω𝑜z
37 36 cbvmptv bOn1𝑜ω𝑜b=zOn1𝑜ω𝑜z
38 37 cnveqi bOn1𝑜ω𝑜b-1=zOn1𝑜ω𝑜z-1
39 38 fveq1i bOn1𝑜ω𝑜b-1rannb=zOn1𝑜ω𝑜z-1rannb
40 2on 2𝑜On
41 peano1 ω
42 oen0 ωOn2𝑜Onωω𝑜2𝑜
43 41 42 mpan2 ωOn2𝑜Onω𝑜2𝑜
44 4 40 43 mp2an ω𝑜2𝑜
45 eqid fIω𝑜2𝑜f-1f-1f-1=fIω𝑜2𝑜f-1f-1f-1
46 45 fveqf1o f:ω𝑜2𝑜1-1 ontoωω𝑜2𝑜ωfIω𝑜2𝑜f-1f-1f-1:ω𝑜2𝑜1-1 ontoωfIω𝑜2𝑜f-1f-1f-1=
47 44 41 46 mp3an23 f:ω𝑜2𝑜1-1 ontoωfIω𝑜2𝑜f-1f-1f-1:ω𝑜2𝑜1-1 ontoωfIω𝑜2𝑜f-1f-1f-1=
48 47 ad2antll AOnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωfIω𝑜2𝑜f-1f-1f-1:ω𝑜2𝑜1-1 ontoωfIω𝑜2𝑜f-1f-1f-1=
49 48 simpld AOnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωfIω𝑜2𝑜f-1f-1f-1:ω𝑜2𝑜1-1 ontoω
50 48 simprd AOnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωfIω𝑜2𝑜f-1f-1f-1=
51 21 35 39 49 50 infxpenc2lem3 AOnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωgbAωbgb:b×b1-1 ontob
52 51 ex AOnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωgbAωbgb:b×b1-1 ontob
53 52 exlimdvv AOnnfxAωxyOn1𝑜nx:x1-1 ontoω𝑜yf:ω𝑜2𝑜1-1 ontoωgbAωbgb:b×b1-1 ontob
54 20 53 biimtrrid AOnnxAωxyOn1𝑜nx:x1-1 ontoω𝑜yff:ω𝑜2𝑜1-1 ontoωgbAωbgb:b×b1-1 ontob
55 1 19 54 mp2and AOngbAωbgb:b×b1-1 ontob