Metamath Proof Explorer


Theorem injresinjlem

Description: Lemma for injresinj . (Contributed by Alexander van der Vekens, 31-Oct-2017) (Proof shortened by AV, 14-Feb-2021) (Revised by Thierry Arnoux, 23-Dec-2021)

Ref Expression
Assertion injresinjlem ¬Y1..^KF0FKF:0KVK0F0KF1..^K=X0KY0KFX=FYX=Y

Proof

Step Hyp Ref Expression
1 elfznelfzo Y0K¬Y1..^KY=0Y=K
2 fvinim0ffz F:0KVK0F0KF1..^K=F0F1..^KFKF1..^K
3 df-nel F0F1..^K¬F0F1..^K
4 fveq2 0=YF0=FY
5 4 eqcoms Y=0F0=FY
6 5 eleq1d Y=0F0F1..^KFYF1..^K
7 6 notbid Y=0¬F0F1..^K¬FYF1..^K
8 7 biimpd Y=0¬F0F1..^K¬FYF1..^K
9 ffn F:0KVFFn0K
10 1eluzge0 10
11 fzoss1 101..^K0..^K
12 10 11 mp1i K01..^K0..^K
13 fzossfz 0..^K0K
14 12 13 sstrdi K01..^K0K
15 fvelimab FFn0K1..^K0KFYF1..^Kz1..^KFz=FY
16 9 14 15 syl2an F:0KVK0FYF1..^Kz1..^KFz=FY
17 16 notbid F:0KVK0¬FYF1..^K¬z1..^KFz=FY
18 ralnex z1..^K¬Fz=FY¬z1..^KFz=FY
19 fveqeq2 z=XFz=FYFX=FY
20 19 notbid z=X¬Fz=FY¬FX=FY
21 20 rspcva X1..^Kz1..^K¬Fz=FY¬FX=FY
22 pm2.21 ¬FX=FYFX=FYX=Y
23 22 a1d ¬FX=FYF0FKFX=FYX=Y
24 23 2a1d ¬FX=FYX0KF:0KVK0F0FKFX=FYX=Y
25 21 24 syl X1..^Kz1..^K¬Fz=FYX0KF:0KVK0F0FKFX=FYX=Y
26 25 expcom z1..^K¬Fz=FYX1..^KX0KF:0KVK0F0FKFX=FYX=Y
27 26 com24 z1..^K¬Fz=FYF:0KVK0X0KX1..^KF0FKFX=FYX=Y
28 18 27 sylbir ¬z1..^KFz=FYF:0KVK0X0KX1..^KF0FKFX=FYX=Y
29 28 com12 F:0KVK0¬z1..^KFz=FYX0KX1..^KF0FKFX=FYX=Y
30 17 29 sylbid F:0KVK0¬FYF1..^KX0KX1..^KF0FKFX=FYX=Y
31 30 com12 ¬FYF1..^KF:0KVK0X0KX1..^KF0FKFX=FYX=Y
32 8 31 syl6com ¬F0F1..^KY=0F:0KVK0X0KX1..^KF0FKFX=FYX=Y
33 3 32 sylbi F0F1..^KY=0F:0KVK0X0KX1..^KF0FKFX=FYX=Y
34 33 adantr F0F1..^KFKF1..^KY=0F:0KVK0X0KX1..^KF0FKFX=FYX=Y
35 34 com12 Y=0F0F1..^KFKF1..^KF:0KVK0X0KX1..^KF0FKFX=FYX=Y
36 df-nel FKF1..^K¬FKF1..^K
37 fveq2 K=YFK=FY
38 37 eqcoms Y=KFK=FY
39 38 eleq1d Y=KFKF1..^KFYF1..^K
40 39 notbid Y=K¬FKF1..^K¬FYF1..^K
41 40 biimpd Y=K¬FKF1..^K¬FYF1..^K
42 41 31 syl6com ¬FKF1..^KY=KF:0KVK0X0KX1..^KF0FKFX=FYX=Y
43 36 42 sylbi FKF1..^KY=KF:0KVK0X0KX1..^KF0FKFX=FYX=Y
44 43 adantl F0F1..^KFKF1..^KY=KF:0KVK0X0KX1..^KF0FKFX=FYX=Y
45 44 com12 Y=KF0F1..^KFKF1..^KF:0KVK0X0KX1..^KF0FKFX=FYX=Y
46 35 45 jaoi Y=0Y=KF0F1..^KFKF1..^KF:0KVK0X0KX1..^KF0FKFX=FYX=Y
47 46 com13 F:0KVK0F0F1..^KFKF1..^KY=0Y=KX0KX1..^KF0FKFX=FYX=Y
48 2 47 sylbid F:0KVK0F0KF1..^K=Y=0Y=KX0KX1..^KF0FKFX=FYX=Y
49 48 com14 X0KF0KF1..^K=Y=0Y=KF:0KVK0X1..^KF0FKFX=FYX=Y
50 49 com12 F0KF1..^K=X0KY=0Y=KF:0KVK0X1..^KF0FKFX=FYX=Y
51 50 com15 X1..^KX0KY=0Y=KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
52 elfznelfzo X0K¬X1..^KX=0X=K
53 eqtr3 X=0Y=0X=Y
54 2a1 X=YF0FKFX=FYX=Y
55 54 2a1d X=YF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
56 53 55 syl X=0Y=0F:0KVK0F0KF1..^K=F0FKFX=FYX=Y
57 5 adantl X=KY=0F0=FY
58 fveq2 K=XFK=FX
59 58 eqcoms X=KFK=FX
60 59 adantr X=KY=0FK=FX
61 57 60 neeq12d X=KY=0F0FKFYFX
62 df-ne FYFX¬FY=FX
63 pm2.24 FY=FX¬FY=FXX=Y
64 63 eqcoms FX=FY¬FY=FXX=Y
65 64 com12 ¬FY=FXFX=FYX=Y
66 62 65 sylbi FYFXFX=FYX=Y
67 61 66 syl6bi X=KY=0F0FKFX=FYX=Y
68 67 2a1d X=KY=0F:0KVK0F0KF1..^K=F0FKFX=FYX=Y
69 fveq2 0=XF0=FX
70 69 eqcoms X=0F0=FX
71 70 adantr X=0Y=KF0=FX
72 38 adantl X=0Y=KFK=FY
73 71 72 neeq12d X=0Y=KF0FKFXFY
74 df-ne FXFY¬FX=FY
75 74 22 sylbi FXFYFX=FYX=Y
76 73 75 syl6bi X=0Y=KF0FKFX=FYX=Y
77 76 2a1d X=0Y=KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
78 eqtr3 X=KY=KX=Y
79 78 55 syl X=KY=KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
80 56 68 77 79 ccase X=0X=KY=0Y=KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
81 80 ex X=0X=KY=0Y=KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
82 52 81 syl X0K¬X1..^KY=0Y=KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
83 82 expcom ¬X1..^KX0KY=0Y=KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
84 51 83 pm2.61i X0KY=0Y=KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
85 84 com12 Y=0Y=KX0KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
86 1 85 syl Y0K¬Y1..^KX0KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
87 86 ex Y0K¬Y1..^KX0KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
88 87 com23 Y0KX0K¬Y1..^KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
89 88 impcom X0KY0K¬Y1..^KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
90 89 com12 ¬Y1..^KX0KY0KF:0KVK0F0KF1..^K=F0FKFX=FYX=Y
91 90 com25 ¬Y1..^KF0FKF:0KVK0F0KF1..^K=X0KY0KFX=FYX=Y