Metamath Proof Explorer


Theorem inlinecirc02p

Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023) (Revised by AV, 16-May-2023)

Ref Expression
Hypotheses inlinecirc02p.i I=12
inlinecirc02p.e E=msup
inlinecirc02p.p P=I
inlinecirc02p.s S=SphereE
inlinecirc02p.0 0˙=I×0
inlinecirc02p.l L=LineME
inlinecirc02p.d D=distE
Assertion inlinecirc02p XPYPXYR+XD0˙<R0˙SRXLYPrPairsP

Proof

Step Hyp Ref Expression
1 inlinecirc02p.i I=12
2 inlinecirc02p.e E=msup
3 inlinecirc02p.p P=I
4 inlinecirc02p.s S=SphereE
5 inlinecirc02p.0 0˙=I×0
6 inlinecirc02p.l L=LineME
7 inlinecirc02p.d D=distE
8 3 ovexi PV
9 8 a1i XPYPXYR+XD0˙<RPV
10 simpl XPYPXYR+XD0˙<RXPYPXY
11 simpl R+XD0˙<RR+
12 11 adantl XPYPXYR+XD0˙<RR+
13 1 3 rrx2pxel XPX1
14 13 3ad2ant1 XPYPXYX1
15 14 adantr XPYPXYR+XD0˙<RX1
16 1 3 rrx2pyel XPX2
17 16 3ad2ant1 XPYPXYX2
18 17 adantr XPYPXYR+XD0˙<RX2
19 1 3 rrx2pxel YPY1
20 19 3ad2ant2 XPYPXYY1
21 20 adantr XPYPXYR+XD0˙<RY1
22 1 3 rrx2pyel YPY2
23 22 3ad2ant2 XPYPXYY2
24 23 adantr XPYPXYR+XD0˙<RY2
25 eqid Y1X1=Y1X1
26 eqid X2Y2=X2Y2
27 eqid Y1X1X2+X2Y2X1=Y1X1X2+X2Y2X1
28 rpre R+R
29 28 adantr R+XD0˙<RR
30 29 adantl XPYPXYR+XD0˙<RR
31 2nn0 20
32 eqid 𝔼hil2=𝔼hil2
33 32 ehlval 20𝔼hil2=msup
34 31 33 ax-mp 𝔼hil2=msup
35 fz12pr 12=12
36 35 1 eqtr4i 12=I
37 36 fveq2i msup=msup
38 34 37 eqtri 𝔼hil2=msup
39 2 38 eqtr4i E=𝔼hil2
40 1 oveq2i I=12
41 3 40 eqtri P=12
42 1 xpeq1i I×0=12×0
43 5 42 eqtri 0˙=12×0
44 39 41 7 43 ehl2eudis0lt XPR+XD0˙<RX12+X22<R2
45 44 3ad2antl1 XPYPXYR+XD0˙<RX12+X22<R2
46 45 biimpd XPYPXYR+XD0˙<RX12+X22<R2
47 46 impr XPYPXYR+XD0˙<RX12+X22<R2
48 1 3 rrx2pnecoorneor XPYPXYX1Y1X2Y2
49 48 orcomd XPYPXYX2Y2X1Y1
50 49 adantr XPYPXYR+XD0˙<RX2Y2X1Y1
51 eqid X2Y22+Y1X12=X2Y22+Y1X12
52 eqid R2X2Y22+Y1X12Y1X1X2+X2Y2X12=R2X2Y22+Y1X12Y1X1X2+X2Y2X12
53 15 18 21 24 25 26 27 30 47 50 51 52 2itscp XPYPXYR+XD0˙<R0<R2X2Y22+Y1X12Y1X1X2+X2Y2X12
54 19 recnd YPY1
55 54 adantl XPYPY1
56 13 recnd XPX1
57 56 adantr XPYPX1
58 16 recnd XPX2
59 58 adantr XPYPX2
60 55 57 59 subdird XPYPY1X1X2=Y1X2X1X2
61 22 recnd YPY2
62 61 adantl XPYPY2
63 59 62 57 subdird XPYPX2Y2X1=X2X1Y2X1
64 60 63 oveq12d XPYPY1X1X2+X2Y2X1=Y1X2X1X2+X2X1-Y2X1
65 55 59 mulcomd XPYPY1X2=X2Y1
66 65 oveq1d XPYPY1X2X1X2=X2Y1X1X2
67 59 57 mulcomd XPYPX2X1=X1X2
68 62 57 mulcomd XPYPY2X1=X1Y2
69 67 68 oveq12d XPYPX2X1Y2X1=X1X2X1Y2
70 66 69 oveq12d XPYPY1X2X1X2+X2X1-Y2X1=X2Y1X1X2+X1X2-X1Y2
71 59 55 mulcld XPYPX2Y1
72 57 59 mulcld XPYPX1X2
73 57 62 mulcld XPYPX1Y2
74 71 72 73 npncand XPYPX2Y1X1X2+X1X2-X1Y2=X2Y1X1Y2
75 64 70 74 3eqtrd XPYPY1X1X2+X2Y2X1=X2Y1X1Y2
76 75 3adant3 XPYPXYY1X1X2+X2Y2X1=X2Y1X1Y2
77 76 adantr XPYPXYR+XD0˙<RY1X1X2+X2Y2X1=X2Y1X1Y2
78 77 eqcomd XPYPXYR+XD0˙<RX2Y1X1Y2=Y1X1X2+X2Y2X1
79 78 oveq1d XPYPXYR+XD0˙<RX2Y1X1Y22=Y1X1X2+X2Y2X12
80 79 oveq2d XPYPXYR+XD0˙<RR2X2Y22+Y1X12X2Y1X1Y22=R2X2Y22+Y1X12Y1X1X2+X2Y2X12
81 53 80 breqtrrd XPYPXYR+XD0˙<R0<R2X2Y22+Y1X12X2Y1X1Y22
82 eqid R2X2Y22+Y1X12X2Y1X1Y22=R2X2Y22+Y1X12X2Y1X1Y22
83 eqid X2Y1X1Y2=X2Y1X1Y2
84 1 2 3 4 5 6 51 82 26 25 83 inlinecirc02plem XPYPXYR+0<R2X2Y22+Y1X12X2Y1X1Y22aPbP0˙SRXLY=abab
85 10 12 81 84 syl12anc XPYPXYR+XD0˙<RaPbP0˙SRXLY=abab
86 prprelprb 0˙SRXLYPrPairsPPVaPbP0˙SRXLY=abab
87 9 85 86 sylanbrc XPYPXYR+XD0˙<R0˙SRXLYPrPairsP