Metamath Proof Explorer


Theorem invpropdlem

Description: Lemma for invpropd . (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses sectpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
sectpropd.2 φ comp 𝑓 C = comp 𝑓 D
Assertion invpropdlem φ P Inv C P Inv D

Proof

Step Hyp Ref Expression
1 sectpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 sectpropd.2 φ comp 𝑓 C = comp 𝑓 D
3 simpr φ P Inv C P Inv C
4 eqid Base C = Base C
5 eqid Inv C = Inv C
6 df-inv Inv = c Cat x Base c , y Base c x Sect c y y Sect c x -1
7 6 mptrcl P Inv C C Cat
8 7 adantl φ P Inv C C Cat
9 eqid Sect C = Sect C
10 4 5 8 9 invffval φ P Inv C Inv C = x Base C , y Base C x Sect C y y Sect C x -1
11 df-mpo x Base C , y Base C x Sect C y y Sect C x -1 = x y z | x Base C y Base C z = x Sect C y y Sect C x -1
12 10 11 eqtrdi φ P Inv C Inv C = x y z | x Base C y Base C z = x Sect C y y Sect C x -1
13 3 12 eleqtrd φ P Inv C P x y z | x Base C y Base C z = x Sect C y y Sect C x -1
14 eloprab1st2nd P x y z | x Base C y Base C z = x Sect C y y Sect C x -1 P = 1 st 1 st P 2 nd 1 st P 2 nd P
15 13 14 syl φ P Inv C P = 1 st 1 st P 2 nd 1 st P 2 nd P
16 1 adantr φ P Inv C Hom 𝑓 C = Hom 𝑓 D
17 2 adantr φ P Inv C comp 𝑓 C = comp 𝑓 D
18 16 17 sectpropd φ P Inv C Sect C = Sect D
19 18 oveqd φ P Inv C 1 st 1 st P Sect C 2 nd 1 st P = 1 st 1 st P Sect D 2 nd 1 st P
20 18 oveqd φ P Inv C 2 nd 1 st P Sect C 1 st 1 st P = 2 nd 1 st P Sect D 1 st 1 st P
21 20 cnveqd φ P Inv C 2 nd 1 st P Sect C 1 st 1 st P -1 = 2 nd 1 st P Sect D 1 st 1 st P -1
22 19 21 ineq12d φ P Inv C 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1 = 1 st 1 st P Sect D 2 nd 1 st P 2 nd 1 st P Sect D 1 st 1 st P -1
23 eleq1 x = 1 st 1 st P x Base C 1 st 1 st P Base C
24 23 anbi1d x = 1 st 1 st P x Base C y Base C 1 st 1 st P Base C y Base C
25 oveq1 x = 1 st 1 st P x Sect C y = 1 st 1 st P Sect C y
26 oveq2 x = 1 st 1 st P y Sect C x = y Sect C 1 st 1 st P
27 26 cnveqd x = 1 st 1 st P y Sect C x -1 = y Sect C 1 st 1 st P -1
28 25 27 ineq12d x = 1 st 1 st P x Sect C y y Sect C x -1 = 1 st 1 st P Sect C y y Sect C 1 st 1 st P -1
29 28 eqeq2d x = 1 st 1 st P z = x Sect C y y Sect C x -1 z = 1 st 1 st P Sect C y y Sect C 1 st 1 st P -1
30 24 29 anbi12d x = 1 st 1 st P x Base C y Base C z = x Sect C y y Sect C x -1 1 st 1 st P Base C y Base C z = 1 st 1 st P Sect C y y Sect C 1 st 1 st P -1
31 eleq1 y = 2 nd 1 st P y Base C 2 nd 1 st P Base C
32 31 anbi2d y = 2 nd 1 st P 1 st 1 st P Base C y Base C 1 st 1 st P Base C 2 nd 1 st P Base C
33 oveq2 y = 2 nd 1 st P 1 st 1 st P Sect C y = 1 st 1 st P Sect C 2 nd 1 st P
34 oveq1 y = 2 nd 1 st P y Sect C 1 st 1 st P = 2 nd 1 st P Sect C 1 st 1 st P
35 34 cnveqd y = 2 nd 1 st P y Sect C 1 st 1 st P -1 = 2 nd 1 st P Sect C 1 st 1 st P -1
36 33 35 ineq12d y = 2 nd 1 st P 1 st 1 st P Sect C y y Sect C 1 st 1 st P -1 = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1
37 36 eqeq2d y = 2 nd 1 st P z = 1 st 1 st P Sect C y y Sect C 1 st 1 st P -1 z = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1
38 32 37 anbi12d y = 2 nd 1 st P 1 st 1 st P Base C y Base C z = 1 st 1 st P Sect C y y Sect C 1 st 1 st P -1 1 st 1 st P Base C 2 nd 1 st P Base C z = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1
39 eqeq1 z = 2 nd P z = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1 2 nd P = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1
40 39 anbi2d z = 2 nd P 1 st 1 st P Base C 2 nd 1 st P Base C z = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1 1 st 1 st P Base C 2 nd 1 st P Base C 2 nd P = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1
41 30 38 40 eloprabi P x y z | x Base C y Base C z = x Sect C y y Sect C x -1 1 st 1 st P Base C 2 nd 1 st P Base C 2 nd P = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1
42 13 41 syl φ P Inv C 1 st 1 st P Base C 2 nd 1 st P Base C 2 nd P = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1
43 42 simprd φ P Inv C 2 nd P = 1 st 1 st P Sect C 2 nd 1 st P 2 nd 1 st P Sect C 1 st 1 st P -1
44 eqid Base D = Base D
45 eqid Inv D = Inv D
46 42 simplld φ P Inv C 1 st 1 st P Base C
47 16 homfeqbas φ P Inv C Base C = Base D
48 46 47 eleqtrd φ P Inv C 1 st 1 st P Base D
49 48 elfvexd φ P Inv C D V
50 16 17 8 49 catpropd φ P Inv C C Cat D Cat
51 8 50 mpbid φ P Inv C D Cat
52 42 simplrd φ P Inv C 2 nd 1 st P Base C
53 52 47 eleqtrd φ P Inv C 2 nd 1 st P Base D
54 eqid Sect D = Sect D
55 44 45 51 48 53 54 invfval φ P Inv C 1 st 1 st P Inv D 2 nd 1 st P = 1 st 1 st P Sect D 2 nd 1 st P 2 nd 1 st P Sect D 1 st 1 st P -1
56 22 43 55 3eqtr4rd φ P Inv C 1 st 1 st P Inv D 2 nd 1 st P = 2 nd P
57 invfn D Cat Inv D Fn Base D × Base D
58 51 57 syl φ P Inv C Inv D Fn Base D × Base D
59 fnbrovb Inv D Fn Base D × Base D 1 st 1 st P Base D 2 nd 1 st P Base D 1 st 1 st P Inv D 2 nd 1 st P = 2 nd P 1 st 1 st P 2 nd 1 st P Inv D 2 nd P
60 58 48 53 59 syl12anc φ P Inv C 1 st 1 st P Inv D 2 nd 1 st P = 2 nd P 1 st 1 st P 2 nd 1 st P Inv D 2 nd P
61 56 60 mpbid φ P Inv C 1 st 1 st P 2 nd 1 st P Inv D 2 nd P
62 df-br 1 st 1 st P 2 nd 1 st P Inv D 2 nd P 1 st 1 st P 2 nd 1 st P 2 nd P Inv D
63 61 62 sylib φ P Inv C 1 st 1 st P 2 nd 1 st P 2 nd P Inv D
64 15 63 eqeltrd φ P Inv C P Inv D