| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectpropd.1 |
|
| 2 |
|
sectpropd.2 |
|
| 3 |
|
simpr |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
df-inv |
|
| 7 |
6
|
mptrcl |
|
| 8 |
7
|
adantl |
|
| 9 |
|
eqid |
|
| 10 |
4 5 8 9
|
invffval |
|
| 11 |
|
df-mpo |
|
| 12 |
10 11
|
eqtrdi |
|
| 13 |
3 12
|
eleqtrd |
|
| 14 |
|
eloprab1st2nd |
|
| 15 |
13 14
|
syl |
|
| 16 |
1
|
adantr |
|
| 17 |
2
|
adantr |
|
| 18 |
16 17
|
sectpropd |
|
| 19 |
18
|
oveqd |
|
| 20 |
18
|
oveqd |
|
| 21 |
20
|
cnveqd |
|
| 22 |
19 21
|
ineq12d |
|
| 23 |
|
eleq1 |
|
| 24 |
23
|
anbi1d |
|
| 25 |
|
oveq1 |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
cnveqd |
|
| 28 |
25 27
|
ineq12d |
|
| 29 |
28
|
eqeq2d |
|
| 30 |
24 29
|
anbi12d |
|
| 31 |
|
eleq1 |
|
| 32 |
31
|
anbi2d |
|
| 33 |
|
oveq2 |
|
| 34 |
|
oveq1 |
|
| 35 |
34
|
cnveqd |
|
| 36 |
33 35
|
ineq12d |
|
| 37 |
36
|
eqeq2d |
|
| 38 |
32 37
|
anbi12d |
|
| 39 |
|
eqeq1 |
|
| 40 |
39
|
anbi2d |
|
| 41 |
30 38 40
|
eloprabi |
|
| 42 |
13 41
|
syl |
|
| 43 |
42
|
simprd |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
42
|
simplld |
|
| 47 |
16
|
homfeqbas |
|
| 48 |
46 47
|
eleqtrd |
|
| 49 |
48
|
elfvexd |
|
| 50 |
16 17 8 49
|
catpropd |
|
| 51 |
8 50
|
mpbid |
|
| 52 |
42
|
simplrd |
|
| 53 |
52 47
|
eleqtrd |
|
| 54 |
|
eqid |
|
| 55 |
44 45 51 48 53 54
|
invfval |
|
| 56 |
22 43 55
|
3eqtr4rd |
|
| 57 |
|
invfn |
|
| 58 |
51 57
|
syl |
|
| 59 |
|
fnbrovb |
|
| 60 |
58 48 53 59
|
syl12anc |
|
| 61 |
56 60
|
mpbid |
|
| 62 |
|
df-br |
|
| 63 |
61 62
|
sylib |
|
| 64 |
15 63
|
eqeltrd |
|