Metamath Proof Explorer


Theorem ioombl1lem2

Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses ioombl1.b B=A+∞
ioombl1.a φA
ioombl1.e φE
ioombl1.v φvol*E
ioombl1.c φC+
ioombl1.s S=seq1+absF
ioombl1.t T=seq1+absG
ioombl1.u U=seq1+absH
ioombl1.f1 φF:2
ioombl1.f2 φEran.F
ioombl1.f3 φsupranS*<vol*E+C
ioombl1.p P=1stFn
ioombl1.q Q=2ndFn
ioombl1.g G=nififPAAPQifPAAPQQ
ioombl1.h H=nPififPAAPQifPAAPQ
Assertion ioombl1lem2 φsupranS*<

Proof

Step Hyp Ref Expression
1 ioombl1.b B=A+∞
2 ioombl1.a φA
3 ioombl1.e φE
4 ioombl1.v φvol*E
5 ioombl1.c φC+
6 ioombl1.s S=seq1+absF
7 ioombl1.t T=seq1+absG
8 ioombl1.u U=seq1+absH
9 ioombl1.f1 φF:2
10 ioombl1.f2 φEran.F
11 ioombl1.f3 φsupranS*<vol*E+C
12 ioombl1.p P=1stFn
13 ioombl1.q Q=2ndFn
14 ioombl1.g G=nififPAAPQifPAAPQQ
15 ioombl1.h H=nPififPAAPQifPAAPQ
16 eqid absF=absF
17 16 6 ovolsf F:2S:0+∞
18 9 17 syl φS:0+∞
19 18 frnd φranS0+∞
20 icossxr 0+∞*
21 19 20 sstrdi φranS*
22 supxrcl ranS*supranS*<*
23 21 22 syl φsupranS*<*
24 5 rpred φC
25 4 24 readdcld φvol*E+C
26 mnfxr −∞*
27 26 a1i φ−∞*
28 18 ffnd φSFn
29 1nn 1
30 fnfvelrn SFn1S1ranS
31 28 29 30 sylancl φS1ranS
32 21 31 sseldd φS1*
33 rge0ssre 0+∞
34 ffvelcdm S:0+∞1S10+∞
35 18 29 34 sylancl φS10+∞
36 33 35 sselid φS1
37 36 mnfltd φ−∞<S1
38 supxrub ranS*S1ranSS1supranS*<
39 21 31 38 syl2anc φS1supranS*<
40 27 32 23 37 39 xrltletrd φ−∞<supranS*<
41 xrre supranS*<*vol*E+C−∞<supranS*<supranS*<vol*E+CsupranS*<
42 23 25 40 11 41 syl22anc φsupranS*<