Step |
Hyp |
Ref |
Expression |
1 |
|
iprodefisumlem.1 |
|
2 |
|
iprodefisumlem.2 |
|
3 |
|
iprodefisumlem.3 |
|
4 |
|
fvco3 |
|
5 |
3 4
|
sylan |
|
6 |
3
|
ffvelrnda |
|
7 |
|
efcl |
|
8 |
6 7
|
syl |
|
9 |
5 8
|
eqeltrd |
|
10 |
1 2 9
|
prodf |
|
11 |
10
|
ffnd |
|
12 |
|
eff |
|
13 |
|
ffn |
|
14 |
12 13
|
ax-mp |
|
15 |
1 2 6
|
serf |
|
16 |
|
fnfco |
|
17 |
14 15 16
|
sylancr |
|
18 |
|
fveq2 |
|
19 |
|
2fveq3 |
|
20 |
18 19
|
eqeq12d |
|
21 |
20
|
imbi2d |
|
22 |
|
fveq2 |
|
23 |
|
2fveq3 |
|
24 |
22 23
|
eqeq12d |
|
25 |
24
|
imbi2d |
|
26 |
|
fveq2 |
|
27 |
|
2fveq3 |
|
28 |
26 27
|
eqeq12d |
|
29 |
28
|
imbi2d |
|
30 |
|
fveq2 |
|
31 |
|
2fveq3 |
|
32 |
30 31
|
eqeq12d |
|
33 |
32
|
imbi2d |
|
34 |
|
uzid |
|
35 |
2 34
|
syl |
|
36 |
35 1
|
eleqtrrdi |
|
37 |
|
fvco3 |
|
38 |
3 36 37
|
syl2anc |
|
39 |
|
seq1 |
|
40 |
2 39
|
syl |
|
41 |
|
seq1 |
|
42 |
2 41
|
syl |
|
43 |
42
|
fveq2d |
|
44 |
38 40 43
|
3eqtr4d |
|
45 |
44
|
a1i |
|
46 |
|
oveq1 |
|
47 |
46
|
3ad2ant3 |
|
48 |
3
|
adantl |
|
49 |
|
peano2uz |
|
50 |
49 1
|
eleqtrrdi |
|
51 |
50
|
adantr |
|
52 |
|
fvco3 |
|
53 |
48 51 52
|
syl2anc |
|
54 |
53
|
oveq2d |
|
55 |
15
|
ffvelrnda |
|
56 |
55
|
expcom |
|
57 |
1
|
eqcomi |
|
58 |
56 57
|
eleq2s |
|
59 |
58
|
imp |
|
60 |
48 51
|
ffvelrnd |
|
61 |
|
efadd |
|
62 |
59 60 61
|
syl2anc |
|
63 |
54 62
|
eqtr4d |
|
64 |
63
|
3adant3 |
|
65 |
47 64
|
eqtrd |
|
66 |
|
seqp1 |
|
67 |
66
|
adantr |
|
68 |
67
|
3adant3 |
|
69 |
|
seqp1 |
|
70 |
69
|
adantr |
|
71 |
70
|
fveq2d |
|
72 |
71
|
3adant3 |
|
73 |
65 68 72
|
3eqtr4d |
|
74 |
73
|
3exp |
|
75 |
74
|
a2d |
|
76 |
21 25 29 33 45 75
|
uzind4 |
|
77 |
76 1
|
eleq2s |
|
78 |
77
|
impcom |
|
79 |
|
fvco3 |
|
80 |
15 79
|
sylan |
|
81 |
78 80
|
eqtr4d |
|
82 |
11 17 81
|
eqfnfvd |
|