Metamath Proof Explorer


Theorem iprodefisumlem

Description: Lemma for iprodefisum . (Contributed by Scott Fenton, 11-Feb-2018)

Ref Expression
Hypotheses iprodefisumlem.1 Z = M
iprodefisumlem.2 φ M
iprodefisumlem.3 φ F : Z
Assertion iprodefisumlem φ seq M × exp F = exp seq M + F

Proof

Step Hyp Ref Expression
1 iprodefisumlem.1 Z = M
2 iprodefisumlem.2 φ M
3 iprodefisumlem.3 φ F : Z
4 fvco3 F : Z k Z exp F k = e F k
5 3 4 sylan φ k Z exp F k = e F k
6 3 ffvelrnda φ k Z F k
7 efcl F k e F k
8 6 7 syl φ k Z e F k
9 5 8 eqeltrd φ k Z exp F k
10 1 2 9 prodf φ seq M × exp F : Z
11 10 ffnd φ seq M × exp F Fn Z
12 eff exp :
13 ffn exp : exp Fn
14 12 13 ax-mp exp Fn
15 1 2 6 serf φ seq M + F : Z
16 fnfco exp Fn seq M + F : Z exp seq M + F Fn Z
17 14 15 16 sylancr φ exp seq M + F Fn Z
18 fveq2 j = M seq M × exp F j = seq M × exp F M
19 2fveq3 j = M e seq M + F j = e seq M + F M
20 18 19 eqeq12d j = M seq M × exp F j = e seq M + F j seq M × exp F M = e seq M + F M
21 20 imbi2d j = M φ seq M × exp F j = e seq M + F j φ seq M × exp F M = e seq M + F M
22 fveq2 j = n seq M × exp F j = seq M × exp F n
23 2fveq3 j = n e seq M + F j = e seq M + F n
24 22 23 eqeq12d j = n seq M × exp F j = e seq M + F j seq M × exp F n = e seq M + F n
25 24 imbi2d j = n φ seq M × exp F j = e seq M + F j φ seq M × exp F n = e seq M + F n
26 fveq2 j = n + 1 seq M × exp F j = seq M × exp F n + 1
27 2fveq3 j = n + 1 e seq M + F j = e seq M + F n + 1
28 26 27 eqeq12d j = n + 1 seq M × exp F j = e seq M + F j seq M × exp F n + 1 = e seq M + F n + 1
29 28 imbi2d j = n + 1 φ seq M × exp F j = e seq M + F j φ seq M × exp F n + 1 = e seq M + F n + 1
30 fveq2 j = k seq M × exp F j = seq M × exp F k
31 2fveq3 j = k e seq M + F j = e seq M + F k
32 30 31 eqeq12d j = k seq M × exp F j = e seq M + F j seq M × exp F k = e seq M + F k
33 32 imbi2d j = k φ seq M × exp F j = e seq M + F j φ seq M × exp F k = e seq M + F k
34 uzid M M M
35 2 34 syl φ M M
36 35 1 eleqtrrdi φ M Z
37 fvco3 F : Z M Z exp F M = e F M
38 3 36 37 syl2anc φ exp F M = e F M
39 seq1 M seq M × exp F M = exp F M
40 2 39 syl φ seq M × exp F M = exp F M
41 seq1 M seq M + F M = F M
42 2 41 syl φ seq M + F M = F M
43 42 fveq2d φ e seq M + F M = e F M
44 38 40 43 3eqtr4d φ seq M × exp F M = e seq M + F M
45 44 a1i M φ seq M × exp F M = e seq M + F M
46 oveq1 seq M × exp F n = e seq M + F n seq M × exp F n exp F n + 1 = e seq M + F n exp F n + 1
47 46 3ad2ant3 n M φ seq M × exp F n = e seq M + F n seq M × exp F n exp F n + 1 = e seq M + F n exp F n + 1
48 3 adantl n M φ F : Z
49 peano2uz n M n + 1 M
50 49 1 eleqtrrdi n M n + 1 Z
51 50 adantr n M φ n + 1 Z
52 fvco3 F : Z n + 1 Z exp F n + 1 = e F n + 1
53 48 51 52 syl2anc n M φ exp F n + 1 = e F n + 1
54 53 oveq2d n M φ e seq M + F n exp F n + 1 = e seq M + F n e F n + 1
55 15 ffvelrnda φ n Z seq M + F n
56 55 expcom n Z φ seq M + F n
57 1 eqcomi M = Z
58 56 57 eleq2s n M φ seq M + F n
59 58 imp n M φ seq M + F n
60 48 51 ffvelrnd n M φ F n + 1
61 efadd seq M + F n F n + 1 e seq M + F n + F n + 1 = e seq M + F n e F n + 1
62 59 60 61 syl2anc n M φ e seq M + F n + F n + 1 = e seq M + F n e F n + 1
63 54 62 eqtr4d n M φ e seq M + F n exp F n + 1 = e seq M + F n + F n + 1
64 63 3adant3 n M φ seq M × exp F n = e seq M + F n e seq M + F n exp F n + 1 = e seq M + F n + F n + 1
65 47 64 eqtrd n M φ seq M × exp F n = e seq M + F n seq M × exp F n exp F n + 1 = e seq M + F n + F n + 1
66 seqp1 n M seq M × exp F n + 1 = seq M × exp F n exp F n + 1
67 66 adantr n M φ seq M × exp F n + 1 = seq M × exp F n exp F n + 1
68 67 3adant3 n M φ seq M × exp F n = e seq M + F n seq M × exp F n + 1 = seq M × exp F n exp F n + 1
69 seqp1 n M seq M + F n + 1 = seq M + F n + F n + 1
70 69 adantr n M φ seq M + F n + 1 = seq M + F n + F n + 1
71 70 fveq2d n M φ e seq M + F n + 1 = e seq M + F n + F n + 1
72 71 3adant3 n M φ seq M × exp F n = e seq M + F n e seq M + F n + 1 = e seq M + F n + F n + 1
73 65 68 72 3eqtr4d n M φ seq M × exp F n = e seq M + F n seq M × exp F n + 1 = e seq M + F n + 1
74 73 3exp n M φ seq M × exp F n = e seq M + F n seq M × exp F n + 1 = e seq M + F n + 1
75 74 a2d n M φ seq M × exp F n = e seq M + F n φ seq M × exp F n + 1 = e seq M + F n + 1
76 21 25 29 33 45 75 uzind4 k M φ seq M × exp F k = e seq M + F k
77 76 1 eleq2s k Z φ seq M × exp F k = e seq M + F k
78 77 impcom φ k Z seq M × exp F k = e seq M + F k
79 fvco3 seq M + F : Z k Z exp seq M + F k = e seq M + F k
80 15 79 sylan φ k Z exp seq M + F k = e seq M + F k
81 78 80 eqtr4d φ k Z seq M × exp F k = exp seq M + F k
82 11 17 81 eqfnfvd φ seq M × exp F = exp seq M + F