| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irrapxlem1 |
|
| 2 |
|
nnre |
|
| 3 |
2
|
ad3antlr |
|
| 4 |
|
rpre |
|
| 5 |
4
|
ad3antrrr |
|
| 6 |
|
elfzelz |
|
| 7 |
6
|
zred |
|
| 8 |
7
|
ad2antlr |
|
| 9 |
5 8
|
remulcld |
|
| 10 |
|
1rp |
|
| 11 |
10
|
a1i |
|
| 12 |
9 11
|
modcld |
|
| 13 |
3 12
|
remulcld |
|
| 14 |
|
intfrac |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
elfzelz |
|
| 17 |
16
|
zred |
|
| 18 |
17
|
adantl |
|
| 19 |
5 18
|
remulcld |
|
| 20 |
19 11
|
modcld |
|
| 21 |
3 20
|
remulcld |
|
| 22 |
|
intfrac |
|
| 23 |
21 22
|
syl |
|
| 24 |
15 23
|
oveq12d |
|
| 25 |
24
|
fveq2d |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
27
|
oveq1d |
|
| 29 |
28
|
oveq1d |
|
| 30 |
29
|
fveq2d |
|
| 31 |
21
|
flcld |
|
| 32 |
31
|
zcnd |
|
| 33 |
13 11
|
modcld |
|
| 34 |
33
|
recnd |
|
| 35 |
21 11
|
modcld |
|
| 36 |
35
|
recnd |
|
| 37 |
32 34 36
|
pnpcand |
|
| 38 |
37
|
fveq2d |
|
| 39 |
|
0red |
|
| 40 |
|
1red |
|
| 41 |
|
modelico |
|
| 42 |
13 10 41
|
sylancl |
|
| 43 |
|
modelico |
|
| 44 |
21 10 43
|
sylancl |
|
| 45 |
|
icodiamlt |
|
| 46 |
39 40 42 44 45
|
syl22anc |
|
| 47 |
|
1m0e1 |
|
| 48 |
46 47
|
breqtrdi |
|
| 49 |
38 48
|
eqbrtrd |
|
| 50 |
49
|
adantr |
|
| 51 |
30 50
|
eqbrtrd |
|
| 52 |
26 51
|
eqbrtrd |
|
| 53 |
52
|
ex |
|
| 54 |
12 20
|
resubcld |
|
| 55 |
54
|
recnd |
|
| 56 |
55
|
abscld |
|
| 57 |
|
nngt0 |
|
| 58 |
57
|
ad3antlr |
|
| 59 |
58
|
gt0ne0d |
|
| 60 |
3 59
|
rereccld |
|
| 61 |
|
ltmul2 |
|
| 62 |
56 60 3 58 61
|
syl112anc |
|
| 63 |
|
nnnn0 |
|
| 64 |
63
|
nn0ge0d |
|
| 65 |
64
|
ad3antlr |
|
| 66 |
3 65
|
absidd |
|
| 67 |
66
|
eqcomd |
|
| 68 |
67
|
oveq1d |
|
| 69 |
3
|
recnd |
|
| 70 |
69 55
|
absmuld |
|
| 71 |
12
|
recnd |
|
| 72 |
20
|
recnd |
|
| 73 |
69 71 72
|
subdid |
|
| 74 |
73
|
fveq2d |
|
| 75 |
68 70 74
|
3eqtr2d |
|
| 76 |
69 59
|
recidd |
|
| 77 |
75 76
|
breq12d |
|
| 78 |
62 77
|
bitrd |
|
| 79 |
53 78
|
sylibrd |
|
| 80 |
79
|
anim2d |
|
| 81 |
80
|
reximdva |
|
| 82 |
81
|
reximdva |
|
| 83 |
1 82
|
mpd |
|