Metamath Proof Explorer


Theorem irrapxlem3

Description: Lemma for irrapx1 . By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion irrapxlem3 A + B x 1 B y 0 A x y < 1 B

Proof

Step Hyp Ref Expression
1 irrapxlem2 A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 < 1 B
2 1m1e0 1 1 = 0
3 elfzelz a 0 B a
4 3 ad2antrl A + B a 0 B b 0 B a
5 4 zred A + B a 0 B b 0 B a
6 elfzelz b 0 B b
7 6 ad2antll A + B a 0 B b 0 B b
8 7 zred A + B a 0 B b 0 B b
9 5 8 posdifd A + B a 0 B b 0 B a < b 0 < b a
10 9 biimpa A + B a 0 B b 0 B a < b 0 < b a
11 2 10 eqbrtrid A + B a 0 B b 0 B a < b 1 1 < b a
12 1z 1
13 simplrr A + B a 0 B b 0 B a < b b 0 B
14 13 6 syl A + B a 0 B b 0 B a < b b
15 simplrl A + B a 0 B b 0 B a < b a 0 B
16 15 3 syl A + B a 0 B b 0 B a < b a
17 14 16 zsubcld A + B a 0 B b 0 B a < b b a
18 zlem1lt 1 b a 1 b a 1 1 < b a
19 12 17 18 sylancr A + B a 0 B b 0 B a < b 1 b a 1 1 < b a
20 11 19 mpbird A + B a 0 B b 0 B a < b 1 b a
21 14 zred A + B a 0 B b 0 B a < b b
22 16 zred A + B a 0 B b 0 B a < b a
23 21 22 resubcld A + B a 0 B b 0 B a < b b a
24 0red A + B a 0 B b 0 B a < b 0
25 21 24 resubcld A + B a 0 B b 0 B a < b b 0
26 simpllr A + B a 0 B b 0 B a < b B
27 26 nnred A + B a 0 B b 0 B a < b B
28 elfzle1 a 0 B 0 a
29 15 28 syl A + B a 0 B b 0 B a < b 0 a
30 24 22 21 29 lesub2dd A + B a 0 B b 0 B a < b b a b 0
31 21 recnd A + B a 0 B b 0 B a < b b
32 31 subid1d A + B a 0 B b 0 B a < b b 0 = b
33 elfzle2 b 0 B b B
34 13 33 syl A + B a 0 B b 0 B a < b b B
35 32 34 eqbrtrd A + B a 0 B b 0 B a < b b 0 B
36 23 25 27 30 35 letrd A + B a 0 B b 0 B a < b b a B
37 12 a1i A + B a 0 B b 0 B a < b 1
38 26 nnzd A + B a 0 B b 0 B a < b B
39 elfz b a 1 B b a 1 B 1 b a b a B
40 17 37 38 39 syl3anc A + B a 0 B b 0 B a < b b a 1 B 1 b a b a B
41 20 36 40 mpbir2and A + B a 0 B b 0 B a < b b a 1 B
42 41 adantrr A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 < 1 B b a 1 B
43 rpre A + A
44 43 ad3antrrr A + B a 0 B b 0 B a < b A
45 44 22 remulcld A + B a 0 B b 0 B a < b A a
46 44 21 remulcld A + B a 0 B b 0 B a < b A b
47 simpr A + B a 0 B b 0 B a < b a < b
48 22 21 47 ltled A + B a 0 B b 0 B a < b a b
49 rpgt0 A + 0 < A
50 49 ad3antrrr A + B a 0 B b 0 B a < b 0 < A
51 lemul2 a b A 0 < A a b A a A b
52 22 21 44 50 51 syl112anc A + B a 0 B b 0 B a < b a b A a A b
53 48 52 mpbid A + B a 0 B b 0 B a < b A a A b
54 flword2 A a A b A a A b A b A a
55 45 46 53 54 syl3anc A + B a 0 B b 0 B a < b A b A a
56 uznn0sub A b A a A b A a 0
57 55 56 syl A + B a 0 B b 0 B a < b A b A a 0
58 57 adantrr A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 < 1 B A b A a 0
59 44 recnd A + B a 0 B b 0 B a < b A
60 22 recnd A + B a 0 B b 0 B a < b a
61 59 31 60 subdid A + B a 0 B b 0 B a < b A b a = A b A a
62 61 oveq1d A + B a 0 B b 0 B a < b A b a A b A a = A b - A a - A b A a
63 46 recnd A + B a 0 B b 0 B a < b A b
64 45 recnd A + B a 0 B b 0 B a < b A a
65 46 flcld A + B a 0 B b 0 B a < b A b
66 65 zcnd A + B a 0 B b 0 B a < b A b
67 45 flcld A + B a 0 B b 0 B a < b A a
68 67 zcnd A + B a 0 B b 0 B a < b A a
69 63 64 66 68 sub4d A + B a 0 B b 0 B a < b A b - A a - A b A a = A b - A b - A a A a
70 modfrac A b A b mod 1 = A b A b
71 46 70 syl A + B a 0 B b 0 B a < b A b mod 1 = A b A b
72 71 eqcomd A + B a 0 B b 0 B a < b A b A b = A b mod 1
73 modfrac A a A a mod 1 = A a A a
74 45 73 syl A + B a 0 B b 0 B a < b A a mod 1 = A a A a
75 74 eqcomd A + B a 0 B b 0 B a < b A a A a = A a mod 1
76 72 75 oveq12d A + B a 0 B b 0 B a < b A b - A b - A a A a = A b mod 1 A a mod 1
77 62 69 76 3eqtrd A + B a 0 B b 0 B a < b A b a A b A a = A b mod 1 A a mod 1
78 77 fveq2d A + B a 0 B b 0 B a < b A b a A b A a = A b mod 1 A a mod 1
79 1rp 1 +
80 79 a1i A + B a 0 B b 0 B a < b 1 +
81 46 80 modcld A + B a 0 B b 0 B a < b A b mod 1
82 81 recnd A + B a 0 B b 0 B a < b A b mod 1
83 45 80 modcld A + B a 0 B b 0 B a < b A a mod 1
84 83 recnd A + B a 0 B b 0 B a < b A a mod 1
85 82 84 abssubd A + B a 0 B b 0 B a < b A b mod 1 A a mod 1 = A a mod 1 A b mod 1
86 78 85 eqtr2d A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 = A b a A b A a
87 86 breq1d A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 < 1 B A b a A b A a < 1 B
88 87 biimpd A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 < 1 B A b a A b A a < 1 B
89 88 impr A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 < 1 B A b a A b A a < 1 B
90 oveq2 x = b a A x = A b a
91 90 fvoveq1d x = b a A x y = A b a y
92 91 breq1d x = b a A x y < 1 B A b a y < 1 B
93 oveq2 y = A b A a A b a y = A b a A b A a
94 93 fveq2d y = A b A a A b a y = A b a A b A a
95 94 breq1d y = A b A a A b a y < 1 B A b a A b A a < 1 B
96 92 95 rspc2ev b a 1 B A b A a 0 A b a A b A a < 1 B x 1 B y 0 A x y < 1 B
97 42 58 89 96 syl3anc A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 < 1 B x 1 B y 0 A x y < 1 B
98 97 ex A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 < 1 B x 1 B y 0 A x y < 1 B
99 98 rexlimdvva A + B a 0 B b 0 B a < b A a mod 1 A b mod 1 < 1 B x 1 B y 0 A x y < 1 B
100 1 99 mpd A + B x 1 B y 0 A x y < 1 B