Metamath Proof Explorer


Theorem irrapxlem3

Description: Lemma for irrapx1 . By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion irrapxlem3 A+Bx1By0Axy<1B

Proof

Step Hyp Ref Expression
1 irrapxlem2 A+Ba0Bb0Ba<bAamod1Abmod1<1B
2 1z 1
3 2 a1i A+Ba0Bb0Ba<b1
4 simpllr A+Ba0Bb0Ba<bB
5 4 nnzd A+Ba0Bb0Ba<bB
6 simplrr A+Ba0Bb0Ba<bb0B
7 6 elfzelzd A+Ba0Bb0Ba<bb
8 simplrl A+Ba0Bb0Ba<ba0B
9 8 elfzelzd A+Ba0Bb0Ba<ba
10 7 9 zsubcld A+Ba0Bb0Ba<bba
11 1m1e0 11=0
12 elfzelz a0Ba
13 12 ad2antrl A+Ba0Bb0Ba
14 13 zred A+Ba0Bb0Ba
15 elfzelz b0Bb
16 15 ad2antll A+Ba0Bb0Bb
17 16 zred A+Ba0Bb0Bb
18 14 17 posdifd A+Ba0Bb0Ba<b0<ba
19 18 biimpa A+Ba0Bb0Ba<b0<ba
20 11 19 eqbrtrid A+Ba0Bb0Ba<b11<ba
21 zlem1lt 1ba1ba11<ba
22 2 10 21 sylancr A+Ba0Bb0Ba<b1ba11<ba
23 20 22 mpbird A+Ba0Bb0Ba<b1ba
24 7 zred A+Ba0Bb0Ba<bb
25 9 zred A+Ba0Bb0Ba<ba
26 24 25 resubcld A+Ba0Bb0Ba<bba
27 0red A+Ba0Bb0Ba<b0
28 24 27 resubcld A+Ba0Bb0Ba<bb0
29 4 nnred A+Ba0Bb0Ba<bB
30 elfzle1 a0B0a
31 8 30 syl A+Ba0Bb0Ba<b0a
32 27 25 24 31 lesub2dd A+Ba0Bb0Ba<bbab0
33 24 recnd A+Ba0Bb0Ba<bb
34 33 subid1d A+Ba0Bb0Ba<bb0=b
35 elfzle2 b0BbB
36 6 35 syl A+Ba0Bb0Ba<bbB
37 34 36 eqbrtrd A+Ba0Bb0Ba<bb0B
38 26 28 29 32 37 letrd A+Ba0Bb0Ba<bbaB
39 3 5 10 23 38 elfzd A+Ba0Bb0Ba<bba1B
40 39 adantrr A+Ba0Bb0Ba<bAamod1Abmod1<1Bba1B
41 rpre A+A
42 41 ad3antrrr A+Ba0Bb0Ba<bA
43 42 25 remulcld A+Ba0Bb0Ba<bAa
44 42 24 remulcld A+Ba0Bb0Ba<bAb
45 simpr A+Ba0Bb0Ba<ba<b
46 25 24 45 ltled A+Ba0Bb0Ba<bab
47 rpgt0 A+0<A
48 47 ad3antrrr A+Ba0Bb0Ba<b0<A
49 lemul2 abA0<AabAaAb
50 25 24 42 48 49 syl112anc A+Ba0Bb0Ba<babAaAb
51 46 50 mpbid A+Ba0Bb0Ba<bAaAb
52 flword2 AaAbAaAbAbAa
53 43 44 51 52 syl3anc A+Ba0Bb0Ba<bAbAa
54 uznn0sub AbAaAbAa0
55 53 54 syl A+Ba0Bb0Ba<bAbAa0
56 55 adantrr A+Ba0Bb0Ba<bAamod1Abmod1<1BAbAa0
57 42 recnd A+Ba0Bb0Ba<bA
58 25 recnd A+Ba0Bb0Ba<ba
59 57 33 58 subdid A+Ba0Bb0Ba<bAba=AbAa
60 59 oveq1d A+Ba0Bb0Ba<bAbaAbAa=Ab-Aa-AbAa
61 44 recnd A+Ba0Bb0Ba<bAb
62 43 recnd A+Ba0Bb0Ba<bAa
63 44 flcld A+Ba0Bb0Ba<bAb
64 63 zcnd A+Ba0Bb0Ba<bAb
65 43 flcld A+Ba0Bb0Ba<bAa
66 65 zcnd A+Ba0Bb0Ba<bAa
67 61 62 64 66 sub4d A+Ba0Bb0Ba<bAb-Aa-AbAa=Ab-Ab-AaAa
68 modfrac AbAbmod1=AbAb
69 44 68 syl A+Ba0Bb0Ba<bAbmod1=AbAb
70 69 eqcomd A+Ba0Bb0Ba<bAbAb=Abmod1
71 modfrac AaAamod1=AaAa
72 43 71 syl A+Ba0Bb0Ba<bAamod1=AaAa
73 72 eqcomd A+Ba0Bb0Ba<bAaAa=Aamod1
74 70 73 oveq12d A+Ba0Bb0Ba<bAb-Ab-AaAa=Abmod1Aamod1
75 60 67 74 3eqtrd A+Ba0Bb0Ba<bAbaAbAa=Abmod1Aamod1
76 75 fveq2d A+Ba0Bb0Ba<bAbaAbAa=Abmod1Aamod1
77 1rp 1+
78 77 a1i A+Ba0Bb0Ba<b1+
79 44 78 modcld A+Ba0Bb0Ba<bAbmod1
80 79 recnd A+Ba0Bb0Ba<bAbmod1
81 43 78 modcld A+Ba0Bb0Ba<bAamod1
82 81 recnd A+Ba0Bb0Ba<bAamod1
83 80 82 abssubd A+Ba0Bb0Ba<bAbmod1Aamod1=Aamod1Abmod1
84 76 83 eqtr2d A+Ba0Bb0Ba<bAamod1Abmod1=AbaAbAa
85 84 breq1d A+Ba0Bb0Ba<bAamod1Abmod1<1BAbaAbAa<1B
86 85 biimpd A+Ba0Bb0Ba<bAamod1Abmod1<1BAbaAbAa<1B
87 86 impr A+Ba0Bb0Ba<bAamod1Abmod1<1BAbaAbAa<1B
88 oveq2 x=baAx=Aba
89 88 fvoveq1d x=baAxy=Abay
90 89 breq1d x=baAxy<1BAbay<1B
91 oveq2 y=AbAaAbay=AbaAbAa
92 91 fveq2d y=AbAaAbay=AbaAbAa
93 92 breq1d y=AbAaAbay<1BAbaAbAa<1B
94 90 93 rspc2ev ba1BAbAa0AbaAbAa<1Bx1By0Axy<1B
95 40 56 87 94 syl3anc A+Ba0Bb0Ba<bAamod1Abmod1<1Bx1By0Axy<1B
96 95 ex A+Ba0Bb0Ba<bAamod1Abmod1<1Bx1By0Axy<1B
97 96 rexlimdvva A+Ba0Bb0Ba<bAamod1Abmod1<1Bx1By0Axy<1B
98 1 97 mpd A+Bx1By0Axy<1B