| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irrapxlem2 |  |-  ( ( A e. RR+ /\ B e. NN ) -> E. a e. ( 0 ... B ) E. b e. ( 0 ... B ) ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) | 
						
							| 2 |  | 1z |  |-  1 e. ZZ | 
						
							| 3 | 2 | a1i |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 1 e. ZZ ) | 
						
							| 4 |  | simpllr |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> B e. NN ) | 
						
							| 5 | 4 | nnzd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> B e. ZZ ) | 
						
							| 6 |  | simplrr |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. ( 0 ... B ) ) | 
						
							| 7 | 6 | elfzelzd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. ZZ ) | 
						
							| 8 |  | simplrl |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. ( 0 ... B ) ) | 
						
							| 9 | 8 | elfzelzd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. ZZ ) | 
						
							| 10 | 7 9 | zsubcld |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) e. ZZ ) | 
						
							| 11 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 12 |  | elfzelz |  |-  ( a e. ( 0 ... B ) -> a e. ZZ ) | 
						
							| 13 | 12 | ad2antrl |  |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> a e. ZZ ) | 
						
							| 14 | 13 | zred |  |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> a e. RR ) | 
						
							| 15 |  | elfzelz |  |-  ( b e. ( 0 ... B ) -> b e. ZZ ) | 
						
							| 16 | 15 | ad2antll |  |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> b e. ZZ ) | 
						
							| 17 | 16 | zred |  |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> b e. RR ) | 
						
							| 18 | 14 17 | posdifd |  |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> ( a < b <-> 0 < ( b - a ) ) ) | 
						
							| 19 | 18 | biimpa |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 < ( b - a ) ) | 
						
							| 20 | 11 19 | eqbrtrid |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( 1 - 1 ) < ( b - a ) ) | 
						
							| 21 |  | zlem1lt |  |-  ( ( 1 e. ZZ /\ ( b - a ) e. ZZ ) -> ( 1 <_ ( b - a ) <-> ( 1 - 1 ) < ( b - a ) ) ) | 
						
							| 22 | 2 10 21 | sylancr |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( 1 <_ ( b - a ) <-> ( 1 - 1 ) < ( b - a ) ) ) | 
						
							| 23 | 20 22 | mpbird |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 1 <_ ( b - a ) ) | 
						
							| 24 | 7 | zred |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. RR ) | 
						
							| 25 | 9 | zred |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. RR ) | 
						
							| 26 | 24 25 | resubcld |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) e. RR ) | 
						
							| 27 |  | 0red |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 e. RR ) | 
						
							| 28 | 24 27 | resubcld |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - 0 ) e. RR ) | 
						
							| 29 | 4 | nnred |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> B e. RR ) | 
						
							| 30 |  | elfzle1 |  |-  ( a e. ( 0 ... B ) -> 0 <_ a ) | 
						
							| 31 | 8 30 | syl |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 <_ a ) | 
						
							| 32 | 27 25 24 31 | lesub2dd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) <_ ( b - 0 ) ) | 
						
							| 33 | 24 | recnd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. CC ) | 
						
							| 34 | 33 | subid1d |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - 0 ) = b ) | 
						
							| 35 |  | elfzle2 |  |-  ( b e. ( 0 ... B ) -> b <_ B ) | 
						
							| 36 | 6 35 | syl |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b <_ B ) | 
						
							| 37 | 34 36 | eqbrtrd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - 0 ) <_ B ) | 
						
							| 38 | 26 28 29 32 37 | letrd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) <_ B ) | 
						
							| 39 | 3 5 10 23 38 | elfzd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) e. ( 1 ... B ) ) | 
						
							| 40 | 39 | adantrr |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> ( b - a ) e. ( 1 ... B ) ) | 
						
							| 41 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 42 | 41 | ad3antrrr |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> A e. RR ) | 
						
							| 43 | 42 25 | remulcld |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. a ) e. RR ) | 
						
							| 44 | 42 24 | remulcld |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. b ) e. RR ) | 
						
							| 45 |  | simpr |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a < b ) | 
						
							| 46 | 25 24 45 | ltled |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a <_ b ) | 
						
							| 47 |  | rpgt0 |  |-  ( A e. RR+ -> 0 < A ) | 
						
							| 48 | 47 | ad3antrrr |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 < A ) | 
						
							| 49 |  | lemul2 |  |-  ( ( a e. RR /\ b e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( a <_ b <-> ( A x. a ) <_ ( A x. b ) ) ) | 
						
							| 50 | 25 24 42 48 49 | syl112anc |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( a <_ b <-> ( A x. a ) <_ ( A x. b ) ) ) | 
						
							| 51 | 46 50 | mpbid |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. a ) <_ ( A x. b ) ) | 
						
							| 52 |  | flword2 |  |-  ( ( ( A x. a ) e. RR /\ ( A x. b ) e. RR /\ ( A x. a ) <_ ( A x. b ) ) -> ( |_ ` ( A x. b ) ) e. ( ZZ>= ` ( |_ ` ( A x. a ) ) ) ) | 
						
							| 53 | 43 44 51 52 | syl3anc |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. b ) ) e. ( ZZ>= ` ( |_ ` ( A x. a ) ) ) ) | 
						
							| 54 |  | uznn0sub |  |-  ( ( |_ ` ( A x. b ) ) e. ( ZZ>= ` ( |_ ` ( A x. a ) ) ) -> ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 ) | 
						
							| 55 | 53 54 | syl |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 ) | 
						
							| 56 | 55 | adantrr |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 ) | 
						
							| 57 | 42 | recnd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> A e. CC ) | 
						
							| 58 | 25 | recnd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. CC ) | 
						
							| 59 | 57 33 58 | subdid |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. ( b - a ) ) = ( ( A x. b ) - ( A x. a ) ) ) | 
						
							| 60 | 59 | oveq1d |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) - ( A x. a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) | 
						
							| 61 | 44 | recnd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. b ) e. CC ) | 
						
							| 62 | 43 | recnd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. a ) e. CC ) | 
						
							| 63 | 44 | flcld |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. b ) ) e. ZZ ) | 
						
							| 64 | 63 | zcnd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. b ) ) e. CC ) | 
						
							| 65 | 43 | flcld |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. a ) ) e. ZZ ) | 
						
							| 66 | 65 | zcnd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. a ) ) e. CC ) | 
						
							| 67 | 61 62 64 66 | sub4d |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( ( A x. b ) - ( A x. a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) - ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) ) | 
						
							| 68 |  | modfrac |  |-  ( ( A x. b ) e. RR -> ( ( A x. b ) mod 1 ) = ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) ) | 
						
							| 69 | 44 68 | syl |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) mod 1 ) = ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) ) | 
						
							| 70 | 69 | eqcomd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) = ( ( A x. b ) mod 1 ) ) | 
						
							| 71 |  | modfrac |  |-  ( ( A x. a ) e. RR -> ( ( A x. a ) mod 1 ) = ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) | 
						
							| 72 | 43 71 | syl |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) mod 1 ) = ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) | 
						
							| 73 | 72 | eqcomd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) = ( ( A x. a ) mod 1 ) ) | 
						
							| 74 | 70 73 | oveq12d |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) - ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) | 
						
							| 75 | 60 67 74 | 3eqtrd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) | 
						
							| 76 | 75 | fveq2d |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) = ( abs ` ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) ) | 
						
							| 77 |  | 1rp |  |-  1 e. RR+ | 
						
							| 78 | 77 | a1i |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 1 e. RR+ ) | 
						
							| 79 | 44 78 | modcld |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) mod 1 ) e. RR ) | 
						
							| 80 | 79 | recnd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) mod 1 ) e. CC ) | 
						
							| 81 | 43 78 | modcld |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) mod 1 ) e. RR ) | 
						
							| 82 | 81 | recnd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) mod 1 ) e. CC ) | 
						
							| 83 | 80 82 | abssubd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( abs ` ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) = ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) ) | 
						
							| 84 | 76 83 | eqtr2d |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) = ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) ) | 
						
							| 85 | 84 | breq1d |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) <-> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) ) | 
						
							| 86 | 85 | biimpd |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) -> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) ) | 
						
							| 87 | 86 | impr |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) | 
						
							| 88 |  | oveq2 |  |-  ( x = ( b - a ) -> ( A x. x ) = ( A x. ( b - a ) ) ) | 
						
							| 89 | 88 | fvoveq1d |  |-  ( x = ( b - a ) -> ( abs ` ( ( A x. x ) - y ) ) = ( abs ` ( ( A x. ( b - a ) ) - y ) ) ) | 
						
							| 90 | 89 | breq1d |  |-  ( x = ( b - a ) -> ( ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) <-> ( abs ` ( ( A x. ( b - a ) ) - y ) ) < ( 1 / B ) ) ) | 
						
							| 91 |  | oveq2 |  |-  ( y = ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) -> ( ( A x. ( b - a ) ) - y ) = ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( y = ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) -> ( abs ` ( ( A x. ( b - a ) ) - y ) ) = ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) ) | 
						
							| 93 | 92 | breq1d |  |-  ( y = ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) -> ( ( abs ` ( ( A x. ( b - a ) ) - y ) ) < ( 1 / B ) <-> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) ) | 
						
							| 94 | 90 93 | rspc2ev |  |-  ( ( ( b - a ) e. ( 1 ... B ) /\ ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 /\ ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) | 
						
							| 95 | 40 56 87 94 | syl3anc |  |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) | 
						
							| 96 | 95 | ex |  |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> ( ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) ) | 
						
							| 97 | 96 | rexlimdvva |  |-  ( ( A e. RR+ /\ B e. NN ) -> ( E. a e. ( 0 ... B ) E. b e. ( 0 ... B ) ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) ) | 
						
							| 98 | 1 97 | mpd |  |-  ( ( A e. RR+ /\ B e. NN ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) |