| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irrapxlem2 |  | 
						
							| 2 |  | 1z |  | 
						
							| 3 | 2 | a1i |  | 
						
							| 4 |  | simpllr |  | 
						
							| 5 | 4 | nnzd |  | 
						
							| 6 |  | simplrr |  | 
						
							| 7 | 6 | elfzelzd |  | 
						
							| 8 |  | simplrl |  | 
						
							| 9 | 8 | elfzelzd |  | 
						
							| 10 | 7 9 | zsubcld |  | 
						
							| 11 |  | 1m1e0 |  | 
						
							| 12 |  | elfzelz |  | 
						
							| 13 | 12 | ad2antrl |  | 
						
							| 14 | 13 | zred |  | 
						
							| 15 |  | elfzelz |  | 
						
							| 16 | 15 | ad2antll |  | 
						
							| 17 | 16 | zred |  | 
						
							| 18 | 14 17 | posdifd |  | 
						
							| 19 | 18 | biimpa |  | 
						
							| 20 | 11 19 | eqbrtrid |  | 
						
							| 21 |  | zlem1lt |  | 
						
							| 22 | 2 10 21 | sylancr |  | 
						
							| 23 | 20 22 | mpbird |  | 
						
							| 24 | 7 | zred |  | 
						
							| 25 | 9 | zred |  | 
						
							| 26 | 24 25 | resubcld |  | 
						
							| 27 |  | 0red |  | 
						
							| 28 | 24 27 | resubcld |  | 
						
							| 29 | 4 | nnred |  | 
						
							| 30 |  | elfzle1 |  | 
						
							| 31 | 8 30 | syl |  | 
						
							| 32 | 27 25 24 31 | lesub2dd |  | 
						
							| 33 | 24 | recnd |  | 
						
							| 34 | 33 | subid1d |  | 
						
							| 35 |  | elfzle2 |  | 
						
							| 36 | 6 35 | syl |  | 
						
							| 37 | 34 36 | eqbrtrd |  | 
						
							| 38 | 26 28 29 32 37 | letrd |  | 
						
							| 39 | 3 5 10 23 38 | elfzd |  | 
						
							| 40 | 39 | adantrr |  | 
						
							| 41 |  | rpre |  | 
						
							| 42 | 41 | ad3antrrr |  | 
						
							| 43 | 42 25 | remulcld |  | 
						
							| 44 | 42 24 | remulcld |  | 
						
							| 45 |  | simpr |  | 
						
							| 46 | 25 24 45 | ltled |  | 
						
							| 47 |  | rpgt0 |  | 
						
							| 48 | 47 | ad3antrrr |  | 
						
							| 49 |  | lemul2 |  | 
						
							| 50 | 25 24 42 48 49 | syl112anc |  | 
						
							| 51 | 46 50 | mpbid |  | 
						
							| 52 |  | flword2 |  | 
						
							| 53 | 43 44 51 52 | syl3anc |  | 
						
							| 54 |  | uznn0sub |  | 
						
							| 55 | 53 54 | syl |  | 
						
							| 56 | 55 | adantrr |  | 
						
							| 57 | 42 | recnd |  | 
						
							| 58 | 25 | recnd |  | 
						
							| 59 | 57 33 58 | subdid |  | 
						
							| 60 | 59 | oveq1d |  | 
						
							| 61 | 44 | recnd |  | 
						
							| 62 | 43 | recnd |  | 
						
							| 63 | 44 | flcld |  | 
						
							| 64 | 63 | zcnd |  | 
						
							| 65 | 43 | flcld |  | 
						
							| 66 | 65 | zcnd |  | 
						
							| 67 | 61 62 64 66 | sub4d |  | 
						
							| 68 |  | modfrac |  | 
						
							| 69 | 44 68 | syl |  | 
						
							| 70 | 69 | eqcomd |  | 
						
							| 71 |  | modfrac |  | 
						
							| 72 | 43 71 | syl |  | 
						
							| 73 | 72 | eqcomd |  | 
						
							| 74 | 70 73 | oveq12d |  | 
						
							| 75 | 60 67 74 | 3eqtrd |  | 
						
							| 76 | 75 | fveq2d |  | 
						
							| 77 |  | 1rp |  | 
						
							| 78 | 77 | a1i |  | 
						
							| 79 | 44 78 | modcld |  | 
						
							| 80 | 79 | recnd |  | 
						
							| 81 | 43 78 | modcld |  | 
						
							| 82 | 81 | recnd |  | 
						
							| 83 | 80 82 | abssubd |  | 
						
							| 84 | 76 83 | eqtr2d |  | 
						
							| 85 | 84 | breq1d |  | 
						
							| 86 | 85 | biimpd |  | 
						
							| 87 | 86 | impr |  | 
						
							| 88 |  | oveq2 |  | 
						
							| 89 | 88 | fvoveq1d |  | 
						
							| 90 | 89 | breq1d |  | 
						
							| 91 |  | oveq2 |  | 
						
							| 92 | 91 | fveq2d |  | 
						
							| 93 | 92 | breq1d |  | 
						
							| 94 | 90 93 | rspc2ev |  | 
						
							| 95 | 40 56 87 94 | syl3anc |  | 
						
							| 96 | 95 | ex |  | 
						
							| 97 | 96 | rexlimdvva |  | 
						
							| 98 | 1 97 | mpd |  |