Metamath Proof Explorer


Theorem irrdiff

Description: The irrationals are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 19-May-2024)

Ref Expression
Assertion irrdiff A¬AqrqrAqAr

Proof

Step Hyp Ref Expression
1 simplll A¬AqrqrA
2 simpllr A¬Aqrqr¬A
3 simplrl A¬Aqrqrq
4 simplrr A¬Aqrqrr
5 simpr A¬Aqrqrqr
6 1 2 3 4 5 irrdifflemf A¬AqrqrAqAr
7 6 ex A¬AqrqrAqAr
8 7 ralrimivva A¬AqrqrAqAr
9 simplr AqrqrAqArAqrqrAqAr
10 peano2rem AA1
11 recn AA
12 1cnd A1
13 11 12 negsubd AA+-1=A1
14 neg1lt0 1<0
15 0lt1 0<1
16 neg1rr 1
17 0re 0
18 1re 1
19 16 17 18 lttri 1<00<11<1
20 14 15 19 mp2an 1<1
21 16 a1i A1
22 1red A1
23 id AA
24 21 22 23 ltadd2d A1<1A+-1<A+1
25 20 24 mpbii AA+-1<A+1
26 13 25 eqbrtrrd AA1<A+1
27 10 26 ltned AA1A+1
28 27 ad2antrr AqrqrAqArAA1A+1
29 1z 1
30 zq 11
31 29 30 ax-mp 1
32 qsubcl A1A1
33 31 32 mpan2 AA1
34 qaddcl A1A+1
35 31 34 mpan2 AA+1
36 35 adantl AqrqrAqArAA+1
37 simpl q=A1r=A+1q=A1
38 simpr q=A1r=A+1r=A+1
39 37 38 neeq12d q=A1r=A+1qrA1A+1
40 oveq2 q=A1Aq=AA1
41 40 adantr q=A1r=A+1Aq=AA1
42 41 fveq2d q=A1r=A+1Aq=AA1
43 oveq2 r=A+1Ar=AA+1
44 43 adantl q=A1r=A+1Ar=AA+1
45 44 fveq2d q=A1r=A+1Ar=AA+1
46 42 45 neeq12d q=A1r=A+1AqArAA1AA+1
47 39 46 imbi12d q=A1r=A+1qrAqArA1A+1AA1AA+1
48 47 rspc2gv A1A+1qrqrAqArA1A+1AA1AA+1
49 33 36 48 syl2an2 AqrqrAqArAqrqrAqArA1A+1AA1AA+1
50 9 28 49 mp2d AqrqrAqArAAA1AA+1
51 neirr ¬11
52 11 12 nncand AAA1=1
53 52 fveq2d AAA1=1
54 11 12 subnegd AA-1=A+1
55 54 oveq2d AAA-1=AA+1
56 21 recnd A1
57 11 56 nncand AAA-1=1
58 55 57 eqtr3d AAA+1=1
59 58 fveq2d AAA+1=1
60 12 absnegd A1=1
61 59 60 eqtrd AAA+1=1
62 53 61 neeq12d AAA1AA+111
63 51 62 mtbiri A¬AA1AA+1
64 63 ad2antrr AqrqrAqArA¬AA1AA+1
65 50 64 pm2.65da AqrqrAqAr¬A
66 8 65 impbida A¬AqrqrAqAr