Metamath Proof Explorer


Theorem isbnd2

Description: The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion isbnd2 MBndXXM∞MetXxXr+X=xballMr

Proof

Step Hyp Ref Expression
1 isbndx MBndXM∞MetXxXr+X=xballMr
2 1 anbi1i MBndXXM∞MetXxXr+X=xballMrX
3 anass M∞MetXxXr+X=xballMrXM∞MetXxXr+X=xballMrX
4 r19.2z XxXr+X=xballMrxXr+X=xballMr
5 4 ancoms xXr+X=xballMrXxXr+X=xballMr
6 oveq1 x=yxballMr=yballMr
7 6 eqeq2d x=yX=xballMrX=yballMr
8 oveq2 r=syballMr=yballMs
9 8 eqeq2d r=sX=yballMrX=yballMs
10 7 9 cbvrex2vw xXr+X=xballMryXs+X=yballMs
11 2rp 2+
12 rpmulcl 2+s+2s+
13 11 12 mpan s+2s+
14 13 ad2antll M∞MetXyXs+2s+
15 14 ad2antrr M∞MetXyXs+xXX=yballMs2s+
16 rpcn s+s
17 2cnd s+2
18 2ne0 20
19 18 a1i s+20
20 divcan3 s2202s2=s
21 20 eqcomd s220s=2s2
22 16 17 19 21 syl3anc s+s=2s2
23 22 oveq2d s+yballMs=yballM2s2
24 23 eqeq2d s+X=yballMsX=yballM2s2
25 24 biimpd s+X=yballMsX=yballM2s2
26 25 ad2antll M∞MetXyXs+X=yballMsX=yballM2s2
27 26 adantr M∞MetXyXs+xXX=yballMsX=yballM2s2
28 27 imp M∞MetXyXs+xXX=yballMsX=yballM2s2
29 simpr M∞MetXyXs+xXX=yballM2s2X=yballM2s2
30 eleq2 X=yballM2s2xXxyballM2s2
31 30 biimpac xXX=yballM2s2xyballM2s2
32 2re 2
33 rpre s+s
34 remulcl 2s2s
35 32 33 34 sylancr s+2s
36 blhalf M∞MetXyX2sxyballM2s2yballM2s2xballM2s
37 36 expr M∞MetXyX2sxyballM2s2yballM2s2xballM2s
38 35 37 sylan2 M∞MetXyXs+xyballM2s2yballM2s2xballM2s
39 38 anasss M∞MetXyXs+xyballM2s2yballM2s2xballM2s
40 39 imp M∞MetXyXs+xyballM2s2yballM2s2xballM2s
41 31 40 sylan2 M∞MetXyXs+xXX=yballM2s2yballM2s2xballM2s
42 41 anassrs M∞MetXyXs+xXX=yballM2s2yballM2s2xballM2s
43 29 42 eqsstrd M∞MetXyXs+xXX=yballM2s2XxballM2s
44 28 43 syldan M∞MetXyXs+xXX=yballMsXxballM2s
45 13 adantl yXs+2s+
46 rpxr 2s+2s*
47 blssm M∞MetXxX2s*xballM2sX
48 46 47 syl3an3 M∞MetXxX2s+xballM2sX
49 48 3expa M∞MetXxX2s+xballM2sX
50 45 49 sylan2 M∞MetXxXyXs+xballM2sX
51 50 an32s M∞MetXyXs+xXxballM2sX
52 51 adantr M∞MetXyXs+xXX=yballMsxballM2sX
53 44 52 eqssd M∞MetXyXs+xXX=yballMsX=xballM2s
54 oveq2 r=2sxballMr=xballM2s
55 54 rspceeqv 2s+X=xballM2sr+X=xballMr
56 15 53 55 syl2anc M∞MetXyXs+xXX=yballMsr+X=xballMr
57 56 ex M∞MetXyXs+xXX=yballMsr+X=xballMr
58 57 ralrimdva M∞MetXyXs+X=yballMsxXr+X=xballMr
59 58 rexlimdvva M∞MetXyXs+X=yballMsxXr+X=xballMr
60 10 59 biimtrid M∞MetXxXr+X=xballMrxXr+X=xballMr
61 rexn0 xXr+X=xballMrX
62 61 a1i M∞MetXxXr+X=xballMrX
63 60 62 jcad M∞MetXxXr+X=xballMrxXr+X=xballMrX
64 5 63 impbid2 M∞MetXxXr+X=xballMrXxXr+X=xballMr
65 64 pm5.32i M∞MetXxXr+X=xballMrXM∞MetXxXr+X=xballMr
66 2 3 65 3bitri MBndXXM∞MetXxXr+X=xballMr