Metamath Proof Explorer


Theorem isf34lem5

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F=x𝒫AAx
Assertion isf34lem5 AVX𝒫AXFX=FX

Proof

Step Hyp Ref Expression
1 compss.a F=x𝒫AAx
2 imassrn FXranF
3 1 isf34lem2 AVF:𝒫A𝒫A
4 3 adantr AVX𝒫AXF:𝒫A𝒫A
5 4 frnd AVX𝒫AXranF𝒫A
6 2 5 sstrid AVX𝒫AXFX𝒫A
7 simprl AVX𝒫AXX𝒫A
8 4 fdmd AVX𝒫AXdomF=𝒫A
9 7 8 sseqtrrd AVX𝒫AXXdomF
10 sseqin2 XdomFdomFX=X
11 9 10 sylib AVX𝒫AXdomFX=X
12 simprr AVX𝒫AXX
13 11 12 eqnetrd AVX𝒫AXdomFX
14 imadisj FX=domFX=
15 14 necon3bii FXdomFX
16 13 15 sylibr AVX𝒫AXFX
17 6 16 jca AVX𝒫AXFX𝒫AFX
18 1 isf34lem4 AVFX𝒫AFXFFX=FFX
19 17 18 syldan AVX𝒫AXFFX=FFX
20 1 isf34lem3 AVX𝒫AFFX=X
21 20 adantrr AVX𝒫AXFFX=X
22 21 inteqd AVX𝒫AXFFX=X
23 19 22 eqtrd AVX𝒫AXFFX=X
24 23 fveq2d AVX𝒫AXFFFX=FX
25 1 compsscnv F-1=F
26 25 fveq1i F-1FFX=FFFX
27 1 compssiso AVFIsom[⊂],[⊂]-1𝒫A𝒫A
28 isof1o FIsom[⊂],[⊂]-1𝒫A𝒫AF:𝒫A1-1 onto𝒫A
29 27 28 syl AVF:𝒫A1-1 onto𝒫A
30 sspwuni FX𝒫AFXA
31 6 30 sylib AVX𝒫AXFXA
32 elpw2g AVFX𝒫AFXA
33 32 adantr AVX𝒫AXFX𝒫AFXA
34 31 33 mpbird AVX𝒫AXFX𝒫A
35 f1ocnvfv1 F:𝒫A1-1 onto𝒫AFX𝒫AF-1FFX=FX
36 29 34 35 syl2an2r AVX𝒫AXF-1FFX=FX
37 26 36 eqtr3id AVX𝒫AXFFFX=FX
38 24 37 eqtr3d AVX𝒫AXFX=FX