Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | compss.a | |
|
Assertion | isf34lem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | |
|
2 | imassrn | |
|
3 | 1 | isf34lem2 | |
4 | 3 | adantr | |
5 | 4 | frnd | |
6 | 2 5 | sstrid | |
7 | simprl | |
|
8 | 4 | fdmd | |
9 | 7 8 | sseqtrrd | |
10 | sseqin2 | |
|
11 | 9 10 | sylib | |
12 | simprr | |
|
13 | 11 12 | eqnetrd | |
14 | imadisj | |
|
15 | 14 | necon3bii | |
16 | 13 15 | sylibr | |
17 | 6 16 | jca | |
18 | 1 | isf34lem4 | |
19 | 17 18 | syldan | |
20 | 1 | isf34lem3 | |
21 | 20 | adantrr | |
22 | 21 | inteqd | |
23 | 19 22 | eqtrd | |
24 | 23 | fveq2d | |
25 | 1 | compsscnv | |
26 | 25 | fveq1i | |
27 | 1 | compssiso | |
28 | isof1o | |
|
29 | 27 28 | syl | |
30 | sspwuni | |
|
31 | 6 30 | sylib | |
32 | elpw2g | |
|
33 | 32 | adantr | |
34 | 31 33 | mpbird | |
35 | f1ocnvfv1 | |
|
36 | 29 34 35 | syl2an2r | |
37 | 26 36 | eqtr3id | |
38 | 24 37 | eqtr3d | |