Metamath Proof Explorer


Theorem isismt

Description: Property of being an isometry. Compare with isismty . (Contributed by Thierry Arnoux, 13-Dec-2019)

Ref Expression
Hypotheses isismt.b B=BaseG
isismt.p P=BaseH
isismt.d D=distG
isismt.m -˙=distH
Assertion isismt GVHWFGIsmtHF:B1-1 ontoPaBbBFa-˙Fb=aDb

Proof

Step Hyp Ref Expression
1 isismt.b B=BaseG
2 isismt.p P=BaseH
3 isismt.d D=distG
4 isismt.m -˙=distH
5 elex GVGV
6 elex HWHV
7 fveq2 g=GBaseg=BaseG
8 7 1 eqtr4di g=GBaseg=B
9 8 f1oeq2d g=Gf:Baseg1-1 ontoBasehf:B1-1 ontoBaseh
10 fveq2 g=Gdistg=distG
11 10 3 eqtr4di g=Gdistg=D
12 11 oveqd g=Gadistgb=aDb
13 12 eqeq2d g=Gfadisthfb=adistgbfadisthfb=aDb
14 8 13 raleqbidv g=GbBasegfadisthfb=adistgbbBfadisthfb=aDb
15 8 14 raleqbidv g=GaBasegbBasegfadisthfb=adistgbaBbBfadisthfb=aDb
16 9 15 anbi12d g=Gf:Baseg1-1 ontoBasehaBasegbBasegfadisthfb=adistgbf:B1-1 ontoBasehaBbBfadisthfb=aDb
17 16 abbidv g=Gf|f:Baseg1-1 ontoBasehaBasegbBasegfadisthfb=adistgb=f|f:B1-1 ontoBasehaBbBfadisthfb=aDb
18 fveq2 h=HBaseh=BaseH
19 18 2 eqtr4di h=HBaseh=P
20 19 f1oeq3d h=Hf:B1-1 ontoBasehf:B1-1 ontoP
21 fveq2 h=Hdisth=distH
22 21 4 eqtr4di h=Hdisth=-˙
23 22 oveqd h=Hfadisthfb=fa-˙fb
24 23 eqeq1d h=Hfadisthfb=aDbfa-˙fb=aDb
25 24 2ralbidv h=HaBbBfadisthfb=aDbaBbBfa-˙fb=aDb
26 20 25 anbi12d h=Hf:B1-1 ontoBasehaBbBfadisthfb=aDbf:B1-1 ontoPaBbBfa-˙fb=aDb
27 26 abbidv h=Hf|f:B1-1 ontoBasehaBbBfadisthfb=aDb=f|f:B1-1 ontoPaBbBfa-˙fb=aDb
28 df-ismt Ismt=gV,hVf|f:Baseg1-1 ontoBasehaBasegbBasegfadisthfb=adistgb
29 ovex PBV
30 f1of f:B1-1 ontoPf:BP
31 2 fvexi PV
32 1 fvexi BV
33 31 32 elmap fPBf:BP
34 30 33 sylibr f:B1-1 ontoPfPB
35 34 adantr f:B1-1 ontoPaBbBfa-˙fb=aDbfPB
36 35 abssi f|f:B1-1 ontoPaBbBfa-˙fb=aDbPB
37 29 36 ssexi f|f:B1-1 ontoPaBbBfa-˙fb=aDbV
38 17 27 28 37 ovmpo GVHVGIsmtH=f|f:B1-1 ontoPaBbBfa-˙fb=aDb
39 5 6 38 syl2an GVHWGIsmtH=f|f:B1-1 ontoPaBbBfa-˙fb=aDb
40 39 eleq2d GVHWFGIsmtHFf|f:B1-1 ontoPaBbBfa-˙fb=aDb
41 f1of F:B1-1 ontoPF:BP
42 fex F:BPBVFV
43 41 32 42 sylancl F:B1-1 ontoPFV
44 43 adantr F:B1-1 ontoPaBbBFa-˙Fb=aDbFV
45 f1oeq1 f=Ff:B1-1 ontoPF:B1-1 ontoP
46 fveq1 f=Ffa=Fa
47 fveq1 f=Ffb=Fb
48 46 47 oveq12d f=Ffa-˙fb=Fa-˙Fb
49 48 eqeq1d f=Ffa-˙fb=aDbFa-˙Fb=aDb
50 49 2ralbidv f=FaBbBfa-˙fb=aDbaBbBFa-˙Fb=aDb
51 45 50 anbi12d f=Ff:B1-1 ontoPaBbBfa-˙fb=aDbF:B1-1 ontoPaBbBFa-˙Fb=aDb
52 44 51 elab3 Ff|f:B1-1 ontoPaBbBfa-˙fb=aDbF:B1-1 ontoPaBbBFa-˙Fb=aDb
53 40 52 bitrdi GVHWFGIsmtHF:B1-1 ontoPaBbBFa-˙Fb=aDb