Metamath Proof Explorer


Theorem islmib

Description: Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
lmif.m M = lInv 𝒢 G D
lmif.l L = Line 𝒢 G
lmif.d φ D ran L
lmicl.1 φ A P
islmib.b φ B P
Assertion islmib φ B = M A A mid 𝒢 G B D D 𝒢 G A L B A = B

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 lmif.m M = lInv 𝒢 G D
7 lmif.l L = Line 𝒢 G
8 lmif.d φ D ran L
9 lmicl.1 φ A P
10 islmib.b φ B P
11 df-lmi lInv 𝒢 = g V d ran Line 𝒢 g a Base g ι b Base g | a mid 𝒢 g b d d 𝒢 g a Line 𝒢 g b a = b
12 fveq2 g = G Line 𝒢 g = Line 𝒢 G
13 12 7 eqtr4di g = G Line 𝒢 g = L
14 13 rneqd g = G ran Line 𝒢 g = ran L
15 fveq2 g = G Base g = Base G
16 15 1 eqtr4di g = G Base g = P
17 fveq2 g = G mid 𝒢 g = mid 𝒢 G
18 17 oveqd g = G a mid 𝒢 g b = a mid 𝒢 G b
19 18 eleq1d g = G a mid 𝒢 g b d a mid 𝒢 G b d
20 eqidd g = G d = d
21 fveq2 g = G 𝒢 g = 𝒢 G
22 13 oveqd g = G a Line 𝒢 g b = a L b
23 20 21 22 breq123d g = G d 𝒢 g a Line 𝒢 g b d 𝒢 G a L b
24 23 orbi1d g = G d 𝒢 g a Line 𝒢 g b a = b d 𝒢 G a L b a = b
25 19 24 anbi12d g = G a mid 𝒢 g b d d 𝒢 g a Line 𝒢 g b a = b a mid 𝒢 G b d d 𝒢 G a L b a = b
26 16 25 riotaeqbidv g = G ι b Base g | a mid 𝒢 g b d d 𝒢 g a Line 𝒢 g b a = b = ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b
27 16 26 mpteq12dv g = G a Base g ι b Base g | a mid 𝒢 g b d d 𝒢 g a Line 𝒢 g b a = b = a P ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b
28 14 27 mpteq12dv g = G d ran Line 𝒢 g a Base g ι b Base g | a mid 𝒢 g b d d 𝒢 g a Line 𝒢 g b a = b = d ran L a P ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b
29 4 elexd φ G V
30 7 fvexi L V
31 rnexg L V ran L V
32 mptexg ran L V d ran L a P ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b V
33 30 31 32 mp2b d ran L a P ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b V
34 33 a1i φ d ran L a P ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b V
35 11 28 29 34 fvmptd3 φ lInv 𝒢 G = d ran L a P ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b
36 eleq2 d = D a mid 𝒢 G b d a mid 𝒢 G b D
37 breq1 d = D d 𝒢 G a L b D 𝒢 G a L b
38 37 orbi1d d = D d 𝒢 G a L b a = b D 𝒢 G a L b a = b
39 36 38 anbi12d d = D a mid 𝒢 G b d d 𝒢 G a L b a = b a mid 𝒢 G b D D 𝒢 G a L b a = b
40 39 riotabidv d = D ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b = ι b P | a mid 𝒢 G b D D 𝒢 G a L b a = b
41 40 mpteq2dv d = D a P ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b = a P ι b P | a mid 𝒢 G b D D 𝒢 G a L b a = b
42 41 adantl φ d = D a P ι b P | a mid 𝒢 G b d d 𝒢 G a L b a = b = a P ι b P | a mid 𝒢 G b D D 𝒢 G a L b a = b
43 1 fvexi P V
44 43 mptex a P ι b P | a mid 𝒢 G b D D 𝒢 G a L b a = b V
45 44 a1i φ a P ι b P | a mid 𝒢 G b D D 𝒢 G a L b a = b V
46 35 42 8 45 fvmptd φ lInv 𝒢 G D = a P ι b P | a mid 𝒢 G b D D 𝒢 G a L b a = b
47 6 46 eqtrid φ M = a P ι b P | a mid 𝒢 G b D D 𝒢 G a L b a = b
48 oveq1 a = A a mid 𝒢 G b = A mid 𝒢 G b
49 48 eleq1d a = A a mid 𝒢 G b D A mid 𝒢 G b D
50 oveq1 a = A a L b = A L b
51 50 breq2d a = A D 𝒢 G a L b D 𝒢 G A L b
52 eqeq1 a = A a = b A = b
53 51 52 orbi12d a = A D 𝒢 G a L b a = b D 𝒢 G A L b A = b
54 49 53 anbi12d a = A a mid 𝒢 G b D D 𝒢 G a L b a = b A mid 𝒢 G b D D 𝒢 G A L b A = b
55 54 riotabidv a = A ι b P | a mid 𝒢 G b D D 𝒢 G a L b a = b = ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b
56 55 adantl φ a = A ι b P | a mid 𝒢 G b D D 𝒢 G a L b a = b = ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b
57 1 2 3 4 5 7 8 9 lmieu φ ∃! b P A mid 𝒢 G b D D 𝒢 G A L b A = b
58 riotacl ∃! b P A mid 𝒢 G b D D 𝒢 G A L b A = b ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b P
59 57 58 syl φ ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b P
60 47 56 9 59 fvmptd φ M A = ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b
61 60 eqeq2d φ B = M A B = ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b
62 oveq2 b = B A mid 𝒢 G b = A mid 𝒢 G B
63 62 eleq1d b = B A mid 𝒢 G b D A mid 𝒢 G B D
64 oveq2 b = B A L b = A L B
65 64 breq2d b = B D 𝒢 G A L b D 𝒢 G A L B
66 eqeq2 b = B A = b A = B
67 65 66 orbi12d b = B D 𝒢 G A L b A = b D 𝒢 G A L B A = B
68 63 67 anbi12d b = B A mid 𝒢 G b D D 𝒢 G A L b A = b A mid 𝒢 G B D D 𝒢 G A L B A = B
69 68 riota2 B P ∃! b P A mid 𝒢 G b D D 𝒢 G A L b A = b A mid 𝒢 G B D D 𝒢 G A L B A = B ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b = B
70 10 57 69 syl2anc φ A mid 𝒢 G B D D 𝒢 G A L B A = B ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b = B
71 eqcom B = ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b = B
72 70 71 bitr4di φ A mid 𝒢 G B D D 𝒢 G A L B A = B B = ι b P | A mid 𝒢 G b D D 𝒢 G A L b A = b
73 61 72 bitr4d φ B = M A A mid 𝒢 G B D D 𝒢 G A L B A = B