Metamath Proof Explorer


Theorem kbass2

Description: Dirac bra-ket associative law ( <. A | B >. ) <. C | = <. A | ( | B >. <. C | ) , i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion kbass2 ABCbraAB·fnbraC=braABketbraC

Proof

Step Hyp Ref Expression
1 ovex braABbraCxV
2 eqid xbraABbraCx=xbraABbraCx
3 1 2 fnmpti xbraABbraCxFn
4 bracl ABbraAB
5 brafn CbraC:
6 hfmmval braABbraC:braAB·fnbraC=xbraABbraCx
7 4 5 6 syl2an ABCbraAB·fnbraC=xbraABbraCx
8 7 3impa ABCbraAB·fnbraC=xbraABbraCx
9 8 fneq1d ABCbraAB·fnbraCFnxbraABbraCxFn
10 3 9 mpbiri ABCbraAB·fnbraCFn
11 brafn AbraA:
12 kbop BCBketbraC:
13 fco braA:BketbraC:braABketbraC:
14 11 12 13 syl2an ABCbraABketbraC:
15 14 3impb ABCbraABketbraC:
16 15 ffnd ABCbraABketbraCFn
17 simpl1 ABCxA
18 simpl2 ABCxB
19 braval ABbraAB=BihA
20 17 18 19 syl2anc ABCxbraAB=BihA
21 simpl3 ABCxC
22 simpr ABCxx
23 braval CxbraCx=xihC
24 21 22 23 syl2anc ABCxbraCx=xihC
25 20 24 oveq12d ABCxbraABbraCx=BihAxihC
26 hicl BABihA
27 18 17 26 syl2anc ABCxBihA
28 20 27 eqeltrd ABCxbraAB
29 21 5 syl ABCxbraC:
30 hfmval braABbraC:xbraAB·fnbraCx=braABbraCx
31 28 29 22 30 syl3anc ABCxbraAB·fnbraCx=braABbraCx
32 hicl xCxihC
33 22 21 32 syl2anc ABCxxihC
34 ax-his3 xihCBAxihCBihA=xihCBihA
35 33 18 17 34 syl3anc ABCxxihCBihA=xihCBihA
36 12 3adant1 ABCBketbraC:
37 fvco3 BketbraC:xbraABketbraCx=braABketbraCx
38 36 37 sylan ABCxbraABketbraCx=braABketbraCx
39 kbval BCxBketbraCx=xihCB
40 18 21 22 39 syl3anc ABCxBketbraCx=xihCB
41 40 fveq2d ABCxbraABketbraCx=braAxihCB
42 hvmulcl xihCBxihCB
43 33 18 42 syl2anc ABCxxihCB
44 braval AxihCBbraAxihCB=xihCBihA
45 17 43 44 syl2anc ABCxbraAxihCB=xihCBihA
46 38 41 45 3eqtrd ABCxbraABketbraCx=xihCBihA
47 27 33 mulcomd ABCxBihAxihC=xihCBihA
48 35 46 47 3eqtr4d ABCxbraABketbraCx=BihAxihC
49 25 31 48 3eqtr4d ABCxbraAB·fnbraCx=braABketbraCx
50 10 16 49 eqfnfvd ABCbraAB·fnbraC=braABketbraC