| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ghm0to0.a |
|
| 2 |
|
f1ghm0to0.b |
|
| 3 |
|
f1ghm0to0.n |
|
| 4 |
|
f1ghm0to0.0 |
|
| 5 |
|
simpl |
|
| 6 |
|
f1fn |
|
| 7 |
6
|
adantl |
|
| 8 |
|
elpreima |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
biimpa |
|
| 11 |
10
|
simpld |
|
| 12 |
10
|
simprd |
|
| 13 |
|
fvex |
|
| 14 |
13
|
elsn |
|
| 15 |
12 14
|
sylib |
|
| 16 |
1 2 3 4
|
f1ghm0to0 |
|
| 17 |
16
|
biimpd |
|
| 18 |
17
|
3expa |
|
| 19 |
18
|
imp |
|
| 20 |
5 11 15 19
|
syl21anc |
|
| 21 |
20
|
ex |
|
| 22 |
|
velsn |
|
| 23 |
21 22
|
imbitrrdi |
|
| 24 |
23
|
ssrdv |
|
| 25 |
|
ghmgrp1 |
|
| 26 |
1 3
|
grpidcl |
|
| 27 |
25 26
|
syl |
|
| 28 |
3 4
|
ghmid |
|
| 29 |
|
fvex |
|
| 30 |
29
|
elsn |
|
| 31 |
28 30
|
sylibr |
|
| 32 |
1 2
|
ghmf |
|
| 33 |
|
ffn |
|
| 34 |
|
elpreima |
|
| 35 |
32 33 34
|
3syl |
|
| 36 |
27 31 35
|
mpbir2and |
|
| 37 |
36
|
snssd |
|
| 38 |
37
|
adantr |
|
| 39 |
24 38
|
eqssd |
|
| 40 |
32
|
adantr |
|
| 41 |
|
simpl |
|
| 42 |
|
simpr2l |
|
| 43 |
|
simpr2r |
|
| 44 |
|
simpr3 |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
1 4 45 46
|
ghmeqker |
|
| 48 |
47
|
biimpa |
|
| 49 |
41 42 43 44 48
|
syl31anc |
|
| 50 |
|
simpr1 |
|
| 51 |
49 50
|
eleqtrd |
|
| 52 |
|
ovex |
|
| 53 |
52
|
elsn |
|
| 54 |
51 53
|
sylib |
|
| 55 |
25
|
adantr |
|
| 56 |
1 3 46
|
grpsubeq0 |
|
| 57 |
55 42 43 56
|
syl3anc |
|
| 58 |
54 57
|
mpbid |
|
| 59 |
58
|
3anassrs |
|
| 60 |
59
|
ex |
|
| 61 |
60
|
ralrimivva |
|
| 62 |
|
dff13 |
|
| 63 |
40 61 62
|
sylanbrc |
|
| 64 |
39 63
|
impbida |
|