Description: A group homomorphism F is injective if and only if its kernel is the singleton { N } . (Contributed by Thierry Arnoux, 27-Oct-2017) (Proof shortened by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kerf1ghm.a | |
|
kerf1ghm.b | |
||
kerf1ghm.n | |
||
kerf1ghm.1 | |
||
Assertion | kerf1ghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kerf1ghm.a | |
|
2 | kerf1ghm.b | |
|
3 | kerf1ghm.n | |
|
4 | kerf1ghm.1 | |
|
5 | simpl | |
|
6 | f1fn | |
|
7 | 6 | adantl | |
8 | elpreima | |
|
9 | 7 8 | syl | |
10 | 9 | biimpa | |
11 | 10 | simpld | |
12 | 10 | simprd | |
13 | fvex | |
|
14 | 13 | elsn | |
15 | 12 14 | sylib | |
16 | 1 2 4 3 | f1ghm0to0 | |
17 | 16 | biimpd | |
18 | 17 | 3expa | |
19 | 18 | imp | |
20 | 5 11 15 19 | syl21anc | |
21 | 20 | ex | |
22 | velsn | |
|
23 | 21 22 | syl6ibr | |
24 | 23 | ssrdv | |
25 | ghmgrp1 | |
|
26 | 1 3 | grpidcl | |
27 | 25 26 | syl | |
28 | 3 4 | ghmid | |
29 | fvex | |
|
30 | 29 | elsn | |
31 | 28 30 | sylibr | |
32 | 1 2 | ghmf | |
33 | ffn | |
|
34 | elpreima | |
|
35 | 32 33 34 | 3syl | |
36 | 27 31 35 | mpbir2and | |
37 | 36 | snssd | |
38 | 37 | adantr | |
39 | 24 38 | eqssd | |
40 | 32 | adantr | |
41 | simpl | |
|
42 | simpr2l | |
|
43 | simpr2r | |
|
44 | simpr3 | |
|
45 | eqid | |
|
46 | eqid | |
|
47 | 1 4 45 46 | ghmeqker | |
48 | 47 | biimpa | |
49 | 41 42 43 44 48 | syl31anc | |
50 | simpr1 | |
|
51 | 49 50 | eleqtrd | |
52 | ovex | |
|
53 | 52 | elsn | |
54 | 51 53 | sylib | |
55 | 41 25 | syl | |
56 | 1 3 46 | grpsubeq0 | |
57 | 55 42 43 56 | syl3anc | |
58 | 54 57 | mpbid | |
59 | 58 | 3anassrs | |
60 | 59 | ex | |
61 | 60 | ralrimivva | |
62 | dff13 | |
|
63 | 40 61 62 | sylanbrc | |
64 | 39 63 | impbida | |