Metamath Proof Explorer


Theorem kerf1ghm

Description: A group homomorphism F is injective if and only if its kernel is the singleton { N } . (Contributed by Thierry Arnoux, 27-Oct-2017) (Proof shortened by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)

Ref Expression
Hypotheses kerf1ghm.a A=BaseR
kerf1ghm.b B=BaseS
kerf1ghm.n N=0R
kerf1ghm.1 0˙=0S
Assertion kerf1ghm FRGrpHomSF:A1-1BF-10˙=N

Proof

Step Hyp Ref Expression
1 kerf1ghm.a A=BaseR
2 kerf1ghm.b B=BaseS
3 kerf1ghm.n N=0R
4 kerf1ghm.1 0˙=0S
5 simpl FRGrpHomSF:A1-1BxF-10˙FRGrpHomSF:A1-1B
6 f1fn F:A1-1BFFnA
7 6 adantl FRGrpHomSF:A1-1BFFnA
8 elpreima FFnAxF-10˙xAFx0˙
9 7 8 syl FRGrpHomSF:A1-1BxF-10˙xAFx0˙
10 9 biimpa FRGrpHomSF:A1-1BxF-10˙xAFx0˙
11 10 simpld FRGrpHomSF:A1-1BxF-10˙xA
12 10 simprd FRGrpHomSF:A1-1BxF-10˙Fx0˙
13 fvex FxV
14 13 elsn Fx0˙Fx=0˙
15 12 14 sylib FRGrpHomSF:A1-1BxF-10˙Fx=0˙
16 1 2 4 3 f1ghm0to0 FRGrpHomSF:A1-1BxAFx=0˙x=N
17 16 biimpd FRGrpHomSF:A1-1BxAFx=0˙x=N
18 17 3expa FRGrpHomSF:A1-1BxAFx=0˙x=N
19 18 imp FRGrpHomSF:A1-1BxAFx=0˙x=N
20 5 11 15 19 syl21anc FRGrpHomSF:A1-1BxF-10˙x=N
21 20 ex FRGrpHomSF:A1-1BxF-10˙x=N
22 velsn xNx=N
23 21 22 syl6ibr FRGrpHomSF:A1-1BxF-10˙xN
24 23 ssrdv FRGrpHomSF:A1-1BF-10˙N
25 ghmgrp1 FRGrpHomSRGrp
26 1 3 grpidcl RGrpNA
27 25 26 syl FRGrpHomSNA
28 3 4 ghmid FRGrpHomSFN=0˙
29 fvex FNV
30 29 elsn FN0˙FN=0˙
31 28 30 sylibr FRGrpHomSFN0˙
32 1 2 ghmf FRGrpHomSF:AB
33 ffn F:ABFFnA
34 elpreima FFnANF-10˙NAFN0˙
35 32 33 34 3syl FRGrpHomSNF-10˙NAFN0˙
36 27 31 35 mpbir2and FRGrpHomSNF-10˙
37 36 snssd FRGrpHomSNF-10˙
38 37 adantr FRGrpHomSF:A1-1BNF-10˙
39 24 38 eqssd FRGrpHomSF:A1-1BF-10˙=N
40 32 adantr FRGrpHomSF-10˙=NF:AB
41 simpl FRGrpHomSF-10˙=NxAyAFx=FyFRGrpHomS
42 simpr2l FRGrpHomSF-10˙=NxAyAFx=FyxA
43 simpr2r FRGrpHomSF-10˙=NxAyAFx=FyyA
44 simpr3 FRGrpHomSF-10˙=NxAyAFx=FyFx=Fy
45 eqid F-10˙=F-10˙
46 eqid -R=-R
47 1 4 45 46 ghmeqker FRGrpHomSxAyAFx=Fyx-RyF-10˙
48 47 biimpa FRGrpHomSxAyAFx=Fyx-RyF-10˙
49 41 42 43 44 48 syl31anc FRGrpHomSF-10˙=NxAyAFx=Fyx-RyF-10˙
50 simpr1 FRGrpHomSF-10˙=NxAyAFx=FyF-10˙=N
51 49 50 eleqtrd FRGrpHomSF-10˙=NxAyAFx=Fyx-RyN
52 ovex x-RyV
53 52 elsn x-RyNx-Ry=N
54 51 53 sylib FRGrpHomSF-10˙=NxAyAFx=Fyx-Ry=N
55 41 25 syl FRGrpHomSF-10˙=NxAyAFx=FyRGrp
56 1 3 46 grpsubeq0 RGrpxAyAx-Ry=Nx=y
57 55 42 43 56 syl3anc FRGrpHomSF-10˙=NxAyAFx=Fyx-Ry=Nx=y
58 54 57 mpbid FRGrpHomSF-10˙=NxAyAFx=Fyx=y
59 58 3anassrs FRGrpHomSF-10˙=NxAyAFx=Fyx=y
60 59 ex FRGrpHomSF-10˙=NxAyAFx=Fyx=y
61 60 ralrimivva FRGrpHomSF-10˙=NxAyAFx=Fyx=y
62 dff13 F:A1-1BF:ABxAyAFx=Fyx=y
63 40 61 62 sylanbrc FRGrpHomSF-10˙=NF:A1-1B
64 39 63 impbida FRGrpHomSF:A1-1BF-10˙=N