Metamath Proof Explorer


Theorem kmlem2

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)

Ref Expression
Assertion kmlem2 yzxφ∃!wwzyy¬yxzxφ∃!wwzy

Proof

Step Hyp Ref Expression
1 ineq2 y=vzy=zv
2 1 eleq2d y=vwzywzv
3 2 eubidv y=v∃!wwzy∃!wwzv
4 3 imbi2d y=vφ∃!wwzyφ∃!wwzv
5 4 ralbidv y=vzxφ∃!wwzyzxφ∃!wwzv
6 5 cbvexvw yzxφ∃!wwzyvzxφ∃!wwzv
7 indi zvu=zvzu
8 elssuni zxzx
9 8 ssneld zx¬ux¬uz
10 disjsn zu=¬uz
11 9 10 imbitrrdi zx¬uxzu=
12 11 impcom ¬uxzxzu=
13 12 uneq2d ¬uxzxzvzu=zv
14 un0 zv=zv
15 13 14 eqtrdi ¬uxzxzvzu=zv
16 7 15 eqtr2id ¬uxzxzv=zvu
17 16 eleq2d ¬uxzxwzvwzvu
18 17 eubidv ¬uxzx∃!wwzv∃!wwzvu
19 18 imbi2d ¬uxzxφ∃!wwzvφ∃!wwzvu
20 19 ralbidva ¬uxzxφ∃!wwzvzxφ∃!wwzvu
21 vsnid uu
22 21 olci uvuu
23 elun uvuuvuu
24 22 23 mpbir uvu
25 elssuni vuxvux
26 25 sseld vuxuvuux
27 24 26 mpi vuxux
28 27 con3i ¬ux¬vux
29 28 biantrurd ¬uxzxφ∃!wwzvu¬vuxzxφ∃!wwzvu
30 20 29 bitrd ¬uxzxφ∃!wwzv¬vuxzxφ∃!wwzvu
31 vex vV
32 vsnex uV
33 31 32 unex vuV
34 eleq1 y=vuyxvux
35 34 notbid y=vu¬yx¬vux
36 ineq2 y=vuzy=zvu
37 36 eleq2d y=vuwzywzvu
38 37 eubidv y=vu∃!wwzy∃!wwzvu
39 38 imbi2d y=vuφ∃!wwzyφ∃!wwzvu
40 39 ralbidv y=vuzxφ∃!wwzyzxφ∃!wwzvu
41 35 40 anbi12d y=vu¬yxzxφ∃!wwzy¬vuxzxφ∃!wwzvu
42 33 41 spcev ¬vuxzxφ∃!wwzvuy¬yxzxφ∃!wwzy
43 30 42 syl6bi ¬uxzxφ∃!wwzvy¬yxzxφ∃!wwzy
44 vuniex xV
45 eleq2 y=xuyux
46 45 notbid y=x¬uy¬ux
47 46 exbidv y=xu¬uyu¬ux
48 nalset ¬yuuy
49 alexn yu¬uy¬yuuy
50 48 49 mpbir yu¬uy
51 50 spi u¬uy
52 44 47 51 vtocl u¬ux
53 43 52 exlimiiv zxφ∃!wwzvy¬yxzxφ∃!wwzy
54 53 exlimiv vzxφ∃!wwzvy¬yxzxφ∃!wwzy
55 6 54 sylbi yzxφ∃!wwzyy¬yxzxφ∃!wwzy
56 exsimpr y¬yxzxφ∃!wwzyyzxφ∃!wwzy
57 55 56 impbii yzxφ∃!wwzyy¬yxzxφ∃!wwzy