Metamath Proof Explorer


Theorem knoppcnlem6

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem6.t T=xx+12x
knoppcnlem6.f F=yn0CnT2 Nny
knoppcnlem6.n φN
knoppcnlem6.1 φC
knoppcnlem6.2 φC<1
Assertion knoppcnlem6 φseq0f+m0zFzmdomu

Proof

Step Hyp Ref Expression
1 knoppcnlem6.t T=xx+12x
2 knoppcnlem6.f F=yn0CnT2 Nny
3 knoppcnlem6.n φN
4 knoppcnlem6.1 φC
5 knoppcnlem6.2 φC<1
6 nn0uz 0=0
7 0zd φ0
8 reex V
9 8 a1i φV
10 1 2 3 4 knoppcnlem5 φm0zFzm:0
11 nn0ex 0V
12 11 mptex m0CmV
13 12 a1i φm0CmV
14 eqid m0Cm=m0Cm
15 14 a1i φk0m0Cm=m0Cm
16 simpr φk0m=km=k
17 16 oveq2d φk0m=kCm=Ck
18 simpr φk0k0
19 ovexd φk0CkV
20 15 17 18 19 fvmptd φk0m0Cmk=Ck
21 4 recnd φC
22 21 abscld φC
23 22 adantr φk0C
24 23 18 reexpcld φk0Ck
25 20 24 eqeltrd φk0m0Cmk
26 eqid m0zFzm=m0zFzm
27 26 a1i φk0wm0zFzm=m0zFzm
28 simpr φk0wm=km=k
29 28 fveq2d φk0wm=kFzm=Fzk
30 29 mpteq2dv φk0wm=kzFzm=zFzk
31 18 adantrr φk0wk0
32 8 mptex zFzkV
33 32 a1i φk0wzFzkV
34 27 30 31 33 fvmptd φk0wm0zFzmk=zFzk
35 simpr φk0wz=wz=w
36 35 fveq2d φk0wz=wFz=Fw
37 36 fveq1d φk0wz=wFzk=Fwk
38 simprr φk0ww
39 fvexd φk0wFwkV
40 34 37 38 39 fvmptd φk0wm0zFzmkw=Fwk
41 40 fveq2d φk0wm0zFzmkw=Fwk
42 3 adantr φk0wN
43 4 adantr φk0wC
44 1 2 42 43 38 31 knoppcnlem4 φk0wFwkm0Cmk
45 41 44 eqbrtrd φk0wm0zFzmkwm0Cmk
46 22 recnd φC
47 absidm CC=C
48 21 47 syl φC=C
49 48 5 eqbrtrd φC<1
50 46 49 20 geolim φseq0+m0Cm11C
51 seqex seq0+m0CmV
52 ovex 11CV
53 51 52 breldm seq0+m0Cm11Cseq0+m0Cmdom
54 50 53 syl φseq0+m0Cmdom
55 6 7 9 10 13 25 45 54 mtest φseq0f+m0zFzmdomu