Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem6.t |
|
2 |
|
knoppcnlem6.f |
|
3 |
|
knoppcnlem6.n |
|
4 |
|
knoppcnlem6.1 |
|
5 |
|
knoppcnlem6.2 |
|
6 |
|
nn0uz |
|
7 |
|
0zd |
|
8 |
|
reex |
|
9 |
8
|
a1i |
|
10 |
1 2 3 4
|
knoppcnlem5 |
|
11 |
|
nn0ex |
|
12 |
11
|
mptex |
|
13 |
12
|
a1i |
|
14 |
|
eqid |
|
15 |
14
|
a1i |
|
16 |
|
simpr |
|
17 |
16
|
oveq2d |
|
18 |
|
simpr |
|
19 |
|
ovexd |
|
20 |
15 17 18 19
|
fvmptd |
|
21 |
4
|
recnd |
|
22 |
21
|
abscld |
|
23 |
22
|
adantr |
|
24 |
23 18
|
reexpcld |
|
25 |
20 24
|
eqeltrd |
|
26 |
|
eqid |
|
27 |
26
|
a1i |
|
28 |
|
simpr |
|
29 |
28
|
fveq2d |
|
30 |
29
|
mpteq2dv |
|
31 |
18
|
adantrr |
|
32 |
8
|
mptex |
|
33 |
32
|
a1i |
|
34 |
27 30 31 33
|
fvmptd |
|
35 |
|
simpr |
|
36 |
35
|
fveq2d |
|
37 |
36
|
fveq1d |
|
38 |
|
simprr |
|
39 |
|
fvexd |
|
40 |
34 37 38 39
|
fvmptd |
|
41 |
40
|
fveq2d |
|
42 |
3
|
adantr |
|
43 |
4
|
adantr |
|
44 |
1 2 42 43 38 31
|
knoppcnlem4 |
|
45 |
41 44
|
eqbrtrd |
|
46 |
22
|
recnd |
|
47 |
|
absidm |
|
48 |
21 47
|
syl |
|
49 |
48 5
|
eqbrtrd |
|
50 |
46 49 20
|
geolim |
|
51 |
|
seqex |
|
52 |
|
ovex |
|
53 |
51 52
|
breldm |
|
54 |
50 53
|
syl |
|
55 |
6 7 9 10 13 25 45 54
|
mtest |
|