Metamath Proof Explorer


Theorem knoppcnlem6

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem6.t T = x x + 1 2 x
knoppcnlem6.f F = y n 0 C n T 2 N n y
knoppcnlem6.n φ N
knoppcnlem6.1 φ C
knoppcnlem6.2 φ C < 1
Assertion knoppcnlem6 φ seq 0 f + m 0 z F z m dom u

Proof

Step Hyp Ref Expression
1 knoppcnlem6.t T = x x + 1 2 x
2 knoppcnlem6.f F = y n 0 C n T 2 N n y
3 knoppcnlem6.n φ N
4 knoppcnlem6.1 φ C
5 knoppcnlem6.2 φ C < 1
6 nn0uz 0 = 0
7 0zd φ 0
8 reex V
9 8 a1i φ V
10 1 2 3 4 knoppcnlem5 φ m 0 z F z m : 0
11 nn0ex 0 V
12 11 mptex m 0 C m V
13 12 a1i φ m 0 C m V
14 eqid m 0 C m = m 0 C m
15 14 a1i φ k 0 m 0 C m = m 0 C m
16 simpr φ k 0 m = k m = k
17 16 oveq2d φ k 0 m = k C m = C k
18 simpr φ k 0 k 0
19 ovexd φ k 0 C k V
20 15 17 18 19 fvmptd φ k 0 m 0 C m k = C k
21 4 recnd φ C
22 21 abscld φ C
23 22 adantr φ k 0 C
24 23 18 reexpcld φ k 0 C k
25 20 24 eqeltrd φ k 0 m 0 C m k
26 eqid m 0 z F z m = m 0 z F z m
27 26 a1i φ k 0 w m 0 z F z m = m 0 z F z m
28 simpr φ k 0 w m = k m = k
29 28 fveq2d φ k 0 w m = k F z m = F z k
30 29 mpteq2dv φ k 0 w m = k z F z m = z F z k
31 18 adantrr φ k 0 w k 0
32 8 mptex z F z k V
33 32 a1i φ k 0 w z F z k V
34 27 30 31 33 fvmptd φ k 0 w m 0 z F z m k = z F z k
35 simpr φ k 0 w z = w z = w
36 35 fveq2d φ k 0 w z = w F z = F w
37 36 fveq1d φ k 0 w z = w F z k = F w k
38 simprr φ k 0 w w
39 fvexd φ k 0 w F w k V
40 34 37 38 39 fvmptd φ k 0 w m 0 z F z m k w = F w k
41 40 fveq2d φ k 0 w m 0 z F z m k w = F w k
42 3 adantr φ k 0 w N
43 4 adantr φ k 0 w C
44 1 2 42 43 38 31 knoppcnlem4 φ k 0 w F w k m 0 C m k
45 41 44 eqbrtrd φ k 0 w m 0 z F z m k w m 0 C m k
46 22 recnd φ C
47 absidm C C = C
48 21 47 syl φ C = C
49 48 5 eqbrtrd φ C < 1
50 46 49 20 geolim φ seq 0 + m 0 C m 1 1 C
51 seqex seq 0 + m 0 C m V
52 ovex 1 1 C V
53 51 52 breldm seq 0 + m 0 C m 1 1 C seq 0 + m 0 C m dom
54 50 53 syl φ seq 0 + m 0 C m dom
55 6 7 9 10 13 25 45 54 mtest φ seq 0 f + m 0 z F z m dom u