Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppcnlem8.t | |
|
knoppcnlem8.f | |
||
knoppcnlem8.n | |
||
knoppcnlem8.1 | |
||
Assertion | knoppcnlem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcnlem8.t | |
|
2 | knoppcnlem8.f | |
|
3 | knoppcnlem8.n | |
|
4 | knoppcnlem8.1 | |
|
5 | 3 | adantr | |
6 | 4 | adantr | |
7 | simpr | |
|
8 | 1 2 5 6 7 | knoppcnlem7 | |
9 | simplr | |
|
10 | nn0uz | |
|
11 | 9 10 | eleqtrdi | |
12 | 5 | ad2antrr | |
13 | 6 | ad2antrr | |
14 | simplr | |
|
15 | elfznn0 | |
|
16 | 15 | adantl | |
17 | 1 2 12 13 14 16 | knoppcnlem3 | |
18 | 17 | recnd | |
19 | addcl | |
|
20 | 19 | adantl | |
21 | 11 18 20 | seqcl | |
22 | 21 | fmpttd | |
23 | cnex | |
|
24 | reex | |
|
25 | 23 24 | pm3.2i | |
26 | elmapg | |
|
27 | 25 26 | ax-mp | |
28 | 22 27 | sylibr | |
29 | 8 28 | eqeltrd | |
30 | 29 | fmpttd | |
31 | 0z | |
|
32 | seqfn | |
|
33 | 31 32 | ax-mp | |
34 | 10 | fneq2i | |
35 | 33 34 | mpbir | |
36 | dffn5 | |
|
37 | 35 36 | mpbi | |
38 | 37 | feq1i | |
39 | 30 38 | sylibr | |