Metamath Proof Explorer


Theorem lclkrlem2b

Description: Lemma for lclkr . (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lclkrlem2a.h H=LHypK
lclkrlem2a.o ˙=ocHKW
lclkrlem2a.u U=DVecHKW
lclkrlem2a.v V=BaseU
lclkrlem2a.z 0˙=0U
lclkrlem2a.p ˙=LSSumU
lclkrlem2a.n N=LSpanU
lclkrlem2a.a A=LSAtomsU
lclkrlem2a.k φKHLWH
lclkrlem2a.b φBV0˙
lclkrlem2a.x φXV0˙
lclkrlem2a.y φYV0˙
lclkrlem2a.e φ˙X˙Y
lclkrlem2b.da φ¬X˙B¬Y˙B
Assertion lclkrlem2b φNX˙NY˙BA

Proof

Step Hyp Ref Expression
1 lclkrlem2a.h H=LHypK
2 lclkrlem2a.o ˙=ocHKW
3 lclkrlem2a.u U=DVecHKW
4 lclkrlem2a.v V=BaseU
5 lclkrlem2a.z 0˙=0U
6 lclkrlem2a.p ˙=LSSumU
7 lclkrlem2a.n N=LSpanU
8 lclkrlem2a.a A=LSAtomsU
9 lclkrlem2a.k φKHLWH
10 lclkrlem2a.b φBV0˙
11 lclkrlem2a.x φXV0˙
12 lclkrlem2a.y φYV0˙
13 lclkrlem2a.e φ˙X˙Y
14 lclkrlem2b.da φ¬X˙B¬Y˙B
15 9 adantr φ¬X˙BKHLWH
16 10 adantr φ¬X˙BBV0˙
17 11 adantr φ¬X˙BXV0˙
18 12 adantr φ¬X˙BYV0˙
19 13 adantr φ¬X˙B˙X˙Y
20 simpr φ¬X˙B¬X˙B
21 1 2 3 4 5 6 7 8 15 16 17 18 19 20 lclkrlem2a φ¬X˙BNX˙NY˙BA
22 1 3 9 dvhlmod φULMod
23 lmodabl ULModUAbel
24 22 23 syl φUAbel
25 eqid LSubSpU=LSubSpU
26 25 lsssssubg ULModLSubSpUSubGrpU
27 22 26 syl φLSubSpUSubGrpU
28 11 eldifad φXV
29 4 25 7 lspsncl ULModXVNXLSubSpU
30 22 28 29 syl2anc φNXLSubSpU
31 27 30 sseldd φNXSubGrpU
32 12 eldifad φYV
33 4 25 7 lspsncl ULModYVNYLSubSpU
34 22 32 33 syl2anc φNYLSubSpU
35 27 34 sseldd φNYSubGrpU
36 6 lsmcom UAbelNXSubGrpUNYSubGrpUNX˙NY=NY˙NX
37 24 31 35 36 syl3anc φNX˙NY=NY˙NX
38 37 ineq1d φNX˙NY˙B=NY˙NX˙B
39 38 adantr φ¬Y˙BNX˙NY˙B=NY˙NX˙B
40 9 adantr φ¬Y˙BKHLWH
41 10 adantr φ¬Y˙BBV0˙
42 12 adantr φ¬Y˙BYV0˙
43 11 adantr φ¬Y˙BXV0˙
44 13 necomd φ˙Y˙X
45 44 adantr φ¬Y˙B˙Y˙X
46 simpr φ¬Y˙B¬Y˙B
47 1 2 3 4 5 6 7 8 40 41 42 43 45 46 lclkrlem2a φ¬Y˙BNY˙NX˙BA
48 39 47 eqeltrd φ¬Y˙BNX˙NY˙BA
49 21 48 14 mpjaodan φNX˙NY˙BA