| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem11.1 |
|
| 2 |
|
lcmineqlem11.2 |
|
| 3 |
|
lcmineqlem11.3 |
|
| 4 |
1
|
nncnd |
|
| 5 |
|
1cnd |
|
| 6 |
4 5
|
addcld |
|
| 7 |
1
|
nnnn0d |
|
| 8 |
|
1nn0 |
|
| 9 |
8
|
a1i |
|
| 10 |
7 9
|
nn0addcld |
|
| 11 |
1
|
nnzd |
|
| 12 |
2
|
nnzd |
|
| 13 |
|
zltp1le |
|
| 14 |
11 12 13
|
syl2anc |
|
| 15 |
3 14
|
mpbid |
|
| 16 |
2 10 15
|
bccl2d |
|
| 17 |
16
|
nncnd |
|
| 18 |
6 17
|
mulcld |
|
| 19 |
18
|
div1d |
|
| 20 |
11
|
peano2zd |
|
| 21 |
1
|
peano2nnd |
|
| 22 |
21
|
nnge1d |
|
| 23 |
20 22 15
|
3jca |
|
| 24 |
|
1z |
|
| 25 |
|
elfz1 |
|
| 26 |
24 25
|
mpan |
|
| 27 |
12 26
|
syl |
|
| 28 |
23 27
|
mpbird |
|
| 29 |
|
bcm1k |
|
| 30 |
28 29
|
syl |
|
| 31 |
4 5
|
pncand |
|
| 32 |
31
|
oveq2d |
|
| 33 |
31
|
oveq2d |
|
| 34 |
33
|
oveq1d |
|
| 35 |
32 34
|
oveq12d |
|
| 36 |
30 35
|
eqtrd |
|
| 37 |
1
|
nnred |
|
| 38 |
2
|
nnred |
|
| 39 |
37 38 3
|
ltled |
|
| 40 |
2 7 39
|
bccl2d |
|
| 41 |
40
|
nncnd |
|
| 42 |
2
|
nncnd |
|
| 43 |
42 4
|
subcld |
|
| 44 |
21
|
nnne0d |
|
| 45 |
41 43 6 44
|
divassd |
|
| 46 |
36 45
|
eqtr4d |
|
| 47 |
46
|
eqcomd |
|
| 48 |
41 43
|
mulcld |
|
| 49 |
48 17 6 44
|
divmul2d |
|
| 50 |
47 49
|
mpbid |
|
| 51 |
50
|
eqcomd |
|
| 52 |
41 43
|
mulcomd |
|
| 53 |
51 52
|
eqtrd |
|
| 54 |
19 53
|
eqtrd |
|
| 55 |
43 41
|
mulcld |
|
| 56 |
1
|
nnne0d |
|
| 57 |
55 4 56
|
divcan3d |
|
| 58 |
54 57
|
eqtr4d |
|
| 59 |
4 43 41
|
mul12d |
|
| 60 |
59
|
oveq1d |
|
| 61 |
58 60
|
eqtrd |
|
| 62 |
|
0ne1 |
|
| 63 |
62
|
a1i |
|
| 64 |
63
|
necomd |
|
| 65 |
16
|
nnne0d |
|
| 66 |
6 17 44 65
|
mulne0d |
|
| 67 |
4 41
|
mulcld |
|
| 68 |
43 67
|
mulcld |
|
| 69 |
37 3
|
gtned |
|
| 70 |
42 4 69
|
subne0d |
|
| 71 |
40
|
nnne0d |
|
| 72 |
4 41 56 71
|
mulne0d |
|
| 73 |
43 67 70 72
|
mulne0d |
|
| 74 |
5 64 18 66 4 56 68 73
|
recbothd |
|
| 75 |
61 74
|
mpbird |
|
| 76 |
4
|
mulridd |
|
| 77 |
76
|
oveq1d |
|
| 78 |
75 77
|
eqtr4d |
|
| 79 |
4 43 5 67 70 72
|
divmuldivd |
|
| 80 |
78 79
|
eqtr4d |
|