Metamath Proof Explorer


Theorem lcmineqlem11

Description: Induction step, continuation for binomial coefficients. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem11.1 φ M
lcmineqlem11.2 φ N
lcmineqlem11.3 φ M < N
Assertion lcmineqlem11 φ 1 M + 1 ( N M + 1 ) = M N M 1 M ( N M)

Proof

Step Hyp Ref Expression
1 lcmineqlem11.1 φ M
2 lcmineqlem11.2 φ N
3 lcmineqlem11.3 φ M < N
4 1 nncnd φ M
5 1cnd φ 1
6 4 5 addcld φ M + 1
7 1 nnnn0d φ M 0
8 1nn0 1 0
9 8 a1i φ 1 0
10 7 9 nn0addcld φ M + 1 0
11 1 nnzd φ M
12 2 nnzd φ N
13 zltp1le M N M < N M + 1 N
14 11 12 13 syl2anc φ M < N M + 1 N
15 3 14 mpbid φ M + 1 N
16 2 10 15 bccl2d φ ( N M + 1 )
17 16 nncnd φ ( N M + 1 )
18 6 17 mulcld φ M + 1 ( N M + 1 )
19 18 div1d φ M + 1 ( N M + 1 ) 1 = M + 1 ( N M + 1 )
20 11 peano2zd φ M + 1
21 1 peano2nnd φ M + 1
22 21 nnge1d φ 1 M + 1
23 20 22 15 3jca φ M + 1 1 M + 1 M + 1 N
24 1z 1
25 elfz1 1 N M + 1 1 N M + 1 1 M + 1 M + 1 N
26 24 25 mpan N M + 1 1 N M + 1 1 M + 1 M + 1 N
27 12 26 syl φ M + 1 1 N M + 1 1 M + 1 M + 1 N
28 23 27 mpbird φ M + 1 1 N
29 bcm1k M + 1 1 N ( N M + 1 ) = ( N M + 1 - 1 ) N M + 1 - 1 M + 1
30 28 29 syl φ ( N M + 1 ) = ( N M + 1 - 1 ) N M + 1 - 1 M + 1
31 4 5 pncand φ M + 1 - 1 = M
32 31 oveq2d φ ( N M + 1 - 1 ) = ( N M)
33 31 oveq2d φ N M + 1 - 1 = N M
34 33 oveq1d φ N M + 1 - 1 M + 1 = N M M + 1
35 32 34 oveq12d φ ( N M + 1 - 1 ) N M + 1 - 1 M + 1 = ( N M) N M M + 1
36 30 35 eqtrd φ ( N M + 1 ) = ( N M) N M M + 1
37 1 nnred φ M
38 2 nnred φ N
39 37 38 3 ltled φ M N
40 2 7 39 bccl2d φ ( N M)
41 40 nncnd φ ( N M)
42 2 nncnd φ N
43 42 4 subcld φ N M
44 21 nnne0d φ M + 1 0
45 41 43 6 44 divassd φ ( N M) N M M + 1 = ( N M) N M M + 1
46 36 45 eqtr4d φ ( N M + 1 ) = ( N M) N M M + 1
47 46 eqcomd φ ( N M) N M M + 1 = ( N M + 1 )
48 41 43 mulcld φ ( N M) N M
49 48 17 6 44 divmul2d φ ( N M) N M M + 1 = ( N M + 1 ) ( N M) N M = M + 1 ( N M + 1 )
50 47 49 mpbid φ ( N M) N M = M + 1 ( N M + 1 )
51 50 eqcomd φ M + 1 ( N M + 1 ) = ( N M) N M
52 41 43 mulcomd φ ( N M) N M = N M ( N M)
53 51 52 eqtrd φ M + 1 ( N M + 1 ) = N M ( N M)
54 19 53 eqtrd φ M + 1 ( N M + 1 ) 1 = N M ( N M)
55 43 41 mulcld φ N M ( N M)
56 1 nnne0d φ M 0
57 55 4 56 divcan3d φ M N M ( N M) M = N M ( N M)
58 54 57 eqtr4d φ M + 1 ( N M + 1 ) 1 = M N M ( N M) M
59 4 43 41 mul12d φ M N M ( N M) = N M M ( N M)
60 59 oveq1d φ M N M ( N M) M = N M M ( N M) M
61 58 60 eqtrd φ M + 1 ( N M + 1 ) 1 = N M M ( N M) M
62 0ne1 0 1
63 62 a1i φ 0 1
64 63 necomd φ 1 0
65 16 nnne0d φ ( N M + 1 ) 0
66 6 17 44 65 mulne0d φ M + 1 ( N M + 1 ) 0
67 4 41 mulcld φ M ( N M)
68 43 67 mulcld φ N M M ( N M)
69 37 3 gtned φ N M
70 42 4 69 subne0d φ N M 0
71 40 nnne0d φ ( N M) 0
72 4 41 56 71 mulne0d φ M ( N M) 0
73 43 67 70 72 mulne0d φ N M M ( N M) 0
74 5 64 18 66 4 56 68 73 recbothd φ 1 M + 1 ( N M + 1 ) = M N M M ( N M) M + 1 ( N M + 1 ) 1 = N M M ( N M) M
75 61 74 mpbird φ 1 M + 1 ( N M + 1 ) = M N M M ( N M)
76 4 mulid1d φ M 1 = M
77 76 oveq1d φ M 1 N M M ( N M) = M N M M ( N M)
78 75 77 eqtr4d φ 1 M + 1 ( N M + 1 ) = M 1 N M M ( N M)
79 4 43 5 67 70 72 divmuldivd φ M N M 1 M ( N M) = M 1 N M M ( N M)
80 78 79 eqtr4d φ 1 M + 1 ( N M + 1 ) = M N M 1 M ( N M)