Metamath Proof Explorer


Theorem lcmineqlem11

Description: Induction step, continuation for binomial coefficients. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem11.1 φM
lcmineqlem11.2 φN
lcmineqlem11.3 φM<N
Assertion lcmineqlem11 φ1M+1(NM+1)=MNM1M(NM)

Proof

Step Hyp Ref Expression
1 lcmineqlem11.1 φM
2 lcmineqlem11.2 φN
3 lcmineqlem11.3 φM<N
4 1 nncnd φM
5 1cnd φ1
6 4 5 addcld φM+1
7 1 nnnn0d φM0
8 1nn0 10
9 8 a1i φ10
10 7 9 nn0addcld φM+10
11 1 nnzd φM
12 2 nnzd φN
13 zltp1le MNM<NM+1N
14 11 12 13 syl2anc φM<NM+1N
15 3 14 mpbid φM+1N
16 2 10 15 bccl2d φ(NM+1)
17 16 nncnd φ(NM+1)
18 6 17 mulcld φM+1(NM+1)
19 18 div1d φM+1(NM+1)1=M+1(NM+1)
20 11 peano2zd φM+1
21 1 peano2nnd φM+1
22 21 nnge1d φ1M+1
23 20 22 15 3jca φM+11M+1M+1N
24 1z 1
25 elfz1 1NM+11NM+11M+1M+1N
26 24 25 mpan NM+11NM+11M+1M+1N
27 12 26 syl φM+11NM+11M+1M+1N
28 23 27 mpbird φM+11N
29 bcm1k M+11N(NM+1)=(NM+1-1)NM+1-1M+1
30 28 29 syl φ(NM+1)=(NM+1-1)NM+1-1M+1
31 4 5 pncand φM+1-1=M
32 31 oveq2d φ(NM+1-1)=(NM)
33 31 oveq2d φNM+1-1=NM
34 33 oveq1d φNM+1-1M+1=NMM+1
35 32 34 oveq12d φ(NM+1-1)NM+1-1M+1=(NM)NMM+1
36 30 35 eqtrd φ(NM+1)=(NM)NMM+1
37 1 nnred φM
38 2 nnred φN
39 37 38 3 ltled φMN
40 2 7 39 bccl2d φ(NM)
41 40 nncnd φ(NM)
42 2 nncnd φN
43 42 4 subcld φNM
44 21 nnne0d φM+10
45 41 43 6 44 divassd φ(NM)NMM+1=(NM)NMM+1
46 36 45 eqtr4d φ(NM+1)=(NM)NMM+1
47 46 eqcomd φ(NM)NMM+1=(NM+1)
48 41 43 mulcld φ(NM)NM
49 48 17 6 44 divmul2d φ(NM)NMM+1=(NM+1)(NM)NM=M+1(NM+1)
50 47 49 mpbid φ(NM)NM=M+1(NM+1)
51 50 eqcomd φM+1(NM+1)=(NM)NM
52 41 43 mulcomd φ(NM)NM=NM(NM)
53 51 52 eqtrd φM+1(NM+1)=NM(NM)
54 19 53 eqtrd φM+1(NM+1)1=NM(NM)
55 43 41 mulcld φNM(NM)
56 1 nnne0d φM0
57 55 4 56 divcan3d φMNM(NM)M=NM(NM)
58 54 57 eqtr4d φM+1(NM+1)1=MNM(NM)M
59 4 43 41 mul12d φMNM(NM)=NMM(NM)
60 59 oveq1d φMNM(NM)M=NMM(NM)M
61 58 60 eqtrd φM+1(NM+1)1=NMM(NM)M
62 0ne1 01
63 62 a1i φ01
64 63 necomd φ10
65 16 nnne0d φ(NM+1)0
66 6 17 44 65 mulne0d φM+1(NM+1)0
67 4 41 mulcld φM(NM)
68 43 67 mulcld φNMM(NM)
69 37 3 gtned φNM
70 42 4 69 subne0d φNM0
71 40 nnne0d φ(NM)0
72 4 41 56 71 mulne0d φM(NM)0
73 43 67 70 72 mulne0d φNMM(NM)0
74 5 64 18 66 4 56 68 73 recbothd φ1M+1(NM+1)=MNMM(NM)M+1(NM+1)1=NMM(NM)M
75 61 74 mpbird φ1M+1(NM+1)=MNMM(NM)
76 4 mulridd φ M1=M
77 76 oveq1d φ M1NMM(NM)=MNMM(NM)
78 75 77 eqtr4d φ1M+1(NM+1)= M1NMM(NM)
79 4 43 5 67 70 72 divmuldivd φMNM1M(NM)= M1NMM(NM)
80 78 79 eqtr4d φ1M+1(NM+1)=MNM1M(NM)