Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn |
|
2 |
1
|
nnrpd |
|
3 |
|
nnrp |
|
4 |
2 3
|
rpdivcld |
|
5 |
4
|
relogcld |
|
6 |
5
|
recnd |
|
7 |
6
|
mulid2d |
|
8 |
|
nncn |
|
9 |
|
nnne0 |
|
10 |
8 9
|
dividd |
|
11 |
10
|
oveq1d |
|
12 |
|
1cnd |
|
13 |
8 12 8 9
|
divdird |
|
14 |
8 9
|
reccld |
|
15 |
14 12
|
addcomd |
|
16 |
11 13 15
|
3eqtr4rd |
|
17 |
16
|
fveq2d |
|
18 |
7 17
|
oveq12d |
|
19 |
6
|
subidd |
|
20 |
18 19
|
eqtrd |
|
21 |
20
|
mpteq2ia |
|
22 |
|
fconstmpt |
|
23 |
|
nnuz |
|
24 |
23
|
xpeq1i |
|
25 |
21 22 24
|
3eqtr2ri |
|
26 |
|
ax-1cn |
|
27 |
|
1nn |
|
28 |
|
eldifn |
|
29 |
27 28
|
mt2 |
|
30 |
|
eldif |
|
31 |
26 29 30
|
mpbir2an |
|
32 |
31
|
a1i |
|
33 |
25 32
|
lgamcvg |
|
34 |
33
|
mptru |
|
35 |
|
log1 |
|
36 |
35
|
oveq2i |
|
37 |
|
lgamcl |
|
38 |
31 37
|
ax-mp |
|
39 |
38
|
addid1i |
|
40 |
36 39
|
eqtri |
|
41 |
34 40
|
breqtri |
|
42 |
|
1z |
|
43 |
|
serclim0 |
|
44 |
42 43
|
ax-mp |
|
45 |
|
climuni |
|
46 |
41 44 45
|
mp2an |
|