Metamath Proof Explorer


Theorem lgam1

Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion lgam1 logΓ1=0

Proof

Step Hyp Ref Expression
1 peano2nn mm+1
2 1 nnrpd mm+1+
3 nnrp mm+
4 2 3 rpdivcld mm+1m+
5 4 relogcld mlogm+1m
6 5 recnd mlogm+1m
7 6 mullidd m1logm+1m=logm+1m
8 nncn mm
9 nnne0 mm0
10 8 9 dividd mmm=1
11 10 oveq1d mmm+1m=1+1m
12 1cnd m1
13 8 12 8 9 divdird mm+1m=mm+1m
14 8 9 reccld m1m
15 14 12 addcomd m1m+1=1+1m
16 11 13 15 3eqtr4rd m1m+1=m+1m
17 16 fveq2d mlog1m+1=logm+1m
18 7 17 oveq12d m1logm+1mlog1m+1=logm+1mlogm+1m
19 6 subidd mlogm+1mlogm+1m=0
20 18 19 eqtrd m1logm+1mlog1m+1=0
21 20 mpteq2ia m1logm+1mlog1m+1=m0
22 fconstmpt ×0=m0
23 nnuz =1
24 23 xpeq1i ×0=1×0
25 21 22 24 3eqtr2ri 1×0=m1logm+1mlog1m+1
26 ax-1cn 1
27 1nn 1
28 eldifn 1¬1
29 27 28 mt2 ¬1
30 eldif 11¬1
31 26 29 30 mpbir2an 1
32 31 a1i 1
33 25 32 lgamcvg seq1+1×0logΓ1+log1
34 33 mptru seq1+1×0logΓ1+log1
35 log1 log1=0
36 35 oveq2i logΓ1+log1=logΓ1+0
37 lgamcl 1logΓ1
38 31 37 ax-mp logΓ1
39 38 addridi logΓ1+0=logΓ1
40 36 39 eqtri logΓ1+log1=logΓ1
41 34 40 breqtri seq1+1×0logΓ1
42 1z 1
43 serclim0 1seq1+1×00
44 42 43 ax-mp seq1+1×00
45 climuni seq1+1×0logΓ1seq1+1×00logΓ1=0
46 41 44 45 mp2an logΓ1=0