Metamath Proof Explorer


Theorem liminfresxr

Description: The inferior limit of a function only depends on the preimage of the extended real part. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresxr.1 φFV
liminfresxr.2 φFunF
liminfresxr.3 A=F-1*
Assertion liminfresxr φlim infFA=lim infF

Proof

Step Hyp Ref Expression
1 liminfresxr.1 φFV
2 liminfresxr.2 φFunF
3 liminfresxr.3 A=F-1*
4 resimass FAk+∞Fk+∞
5 4 a1i φFAk+∞Fk+∞
6 5 ssrind φFAk+∞*Fk+∞*
7 2 funfnd φFFndomF
8 elinel1 yFk+∞*yFk+∞
9 fvelima2 FFndomFyFk+∞xdomFk+∞Fx=y
10 7 8 9 syl2an φyFk+∞*xdomFk+∞Fx=y
11 elinel1 xdomFk+∞xdomF
12 11 3ad2ant2 yFk+∞*xdomFk+∞Fx=yxdomF
13 simpr yFk+∞*Fx=yFx=y
14 elinel2 yFk+∞*y*
15 14 adantr yFk+∞*Fx=yy*
16 13 15 eqeltrd yFk+∞*Fx=yFx*
17 16 3adant2 yFk+∞*xdomFk+∞Fx=yFx*
18 12 17 jca yFk+∞*xdomFk+∞Fx=yxdomFFx*
19 18 3adant1l φyFk+∞*xdomFk+∞Fx=yxdomFFx*
20 simp1l φyFk+∞*xdomFk+∞Fx=yφ
21 elpreima FFndomFxF-1*xdomFFx*
22 7 21 syl φxF-1*xdomFFx*
23 20 22 syl φyFk+∞*xdomFk+∞Fx=yxF-1*xdomFFx*
24 19 23 mpbird φyFk+∞*xdomFk+∞Fx=yxF-1*
25 24 3 eleqtrrdi φyFk+∞*xdomFk+∞Fx=yxA
26 25 3expa φyFk+∞*xdomFk+∞Fx=yxA
27 26 fvresd φyFk+∞*xdomFk+∞Fx=yFAx=Fx
28 simpr φyFk+∞*xdomFk+∞Fx=yFx=y
29 27 28 eqtr2d φyFk+∞*xdomFk+∞Fx=yy=FAx
30 simplll φyFk+∞*xdomFk+∞Fx=yφ
31 2 funresd φFunFA
32 30 31 syl φyFk+∞*xdomFk+∞Fx=yFunFA
33 11 ad2antlr φyFk+∞*xdomFk+∞Fx=yxdomF
34 26 33 elind φyFk+∞*xdomFk+∞Fx=yxAdomF
35 dmres domFA=AdomF
36 34 35 eleqtrrdi φyFk+∞*xdomFk+∞Fx=yxdomFA
37 32 36 jca φyFk+∞*xdomFk+∞Fx=yFunFAxdomFA
38 elinel2 xdomFk+∞xk+∞
39 38 ad2antlr φyFk+∞*xdomFk+∞Fx=yxk+∞
40 funfvima FunFAxdomFAxk+∞FAxFAk+∞
41 37 39 40 sylc φyFk+∞*xdomFk+∞Fx=yFAxFAk+∞
42 29 41 eqeltrd φyFk+∞*xdomFk+∞Fx=yyFAk+∞
43 42 rexlimdva2 φyFk+∞*xdomFk+∞Fx=yyFAk+∞
44 10 43 mpd φyFk+∞*yFAk+∞
45 44 ralrimiva φyFk+∞*yFAk+∞
46 dfss3 Fk+∞*FAk+∞yFk+∞*yFAk+∞
47 45 46 sylibr φFk+∞*FAk+∞
48 inss2 Fk+∞**
49 48 a1i φFk+∞**
50 47 49 ssind φFk+∞*FAk+∞*
51 6 50 eqssd φFAk+∞*=Fk+∞*
52 51 infeq1d φsupFAk+∞**<=supFk+∞**<
53 52 mpteq2dv φksupFAk+∞**<=ksupFk+∞**<
54 53 rneqd φranksupFAk+∞**<=ranksupFk+∞**<
55 54 supeq1d φsupranksupFAk+∞**<*<=supranksupFk+∞**<*<
56 1 resexd φFAV
57 eqid ksupFAk+∞**<=ksupFAk+∞**<
58 57 liminfval FAVlim infFA=supranksupFAk+∞**<*<
59 56 58 syl φlim infFA=supranksupFAk+∞**<*<
60 eqid ksupFk+∞**<=ksupFk+∞**<
61 60 liminfval FVlim infF=supranksupFk+∞**<*<
62 1 61 syl φlim infF=supranksupFk+∞**<*<
63 55 59 62 3eqtr4d φlim infFA=lim infF