Metamath Proof Explorer


Theorem lincfsuppcl

Description: A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincfsuppcl.b B = Base M
lincfsuppcl.r R = Scalar M
lincfsuppcl.s S = Base R
lincfsuppcl.0 0 ˙ = 0 R
Assertion lincfsuppcl M LMod V W V B F S V finSupp 0 ˙ F F linC M V B

Proof

Step Hyp Ref Expression
1 lincfsuppcl.b B = Base M
2 lincfsuppcl.r R = Scalar M
3 lincfsuppcl.s S = Base R
4 lincfsuppcl.0 0 ˙ = 0 R
5 simp1 M LMod V W V B F S V finSupp 0 ˙ F M LMod
6 2 fveq2i Base R = Base Scalar M
7 3 6 eqtri S = Base Scalar M
8 7 oveq1i S V = Base Scalar M V
9 8 eleq2i F S V F Base Scalar M V
10 9 biimpi F S V F Base Scalar M V
11 10 adantr F S V finSupp 0 ˙ F F Base Scalar M V
12 11 3ad2ant3 M LMod V W V B F S V finSupp 0 ˙ F F Base Scalar M V
13 elpwg V W V 𝒫 Base M V Base M
14 1 a1i V W B = Base M
15 14 eqcomd V W Base M = B
16 15 sseq2d V W V Base M V B
17 13 16 bitr2d V W V B V 𝒫 Base M
18 17 biimpa V W V B V 𝒫 Base M
19 18 3ad2ant2 M LMod V W V B F S V finSupp 0 ˙ F V 𝒫 Base M
20 lincval M LMod F Base Scalar M V V 𝒫 Base M F linC M V = M v V F v M v
21 5 12 19 20 syl3anc M LMod V W V B F S V finSupp 0 ˙ F F linC M V = M v V F v M v
22 eqid 0 M = 0 M
23 lmodcmn M LMod M CMnd
24 23 3ad2ant1 M LMod V W V B F S V finSupp 0 ˙ F M CMnd
25 simpl V W V B V W
26 25 3ad2ant2 M LMod V W V B F S V finSupp 0 ˙ F V W
27 5 adantr M LMod V W V B F S V finSupp 0 ˙ F v V M LMod
28 elmapi F S V F : V S
29 ffvelrn F : V S v V F v S
30 29 ex F : V S v V F v S
31 28 30 syl F S V v V F v S
32 31 adantr F S V finSupp 0 ˙ F v V F v S
33 32 3ad2ant3 M LMod V W V B F S V finSupp 0 ˙ F v V F v S
34 33 imp M LMod V W V B F S V finSupp 0 ˙ F v V F v S
35 ssel V B v V v B
36 35 adantl V W V B v V v B
37 36 3ad2ant2 M LMod V W V B F S V finSupp 0 ˙ F v V v B
38 37 imp M LMod V W V B F S V finSupp 0 ˙ F v V v B
39 eqid M = M
40 1 2 39 3 lmodvscl M LMod F v S v B F v M v B
41 27 34 38 40 syl3anc M LMod V W V B F S V finSupp 0 ˙ F v V F v M v B
42 41 fmpttd M LMod V W V B F S V finSupp 0 ˙ F v V F v M v : V B
43 simpl F S V finSupp 0 ˙ F F S V
44 43 3ad2ant3 M LMod V W V B F S V finSupp 0 ˙ F F S V
45 simp3r M LMod V W V B F S V finSupp 0 ˙ F finSupp 0 ˙ F
46 45 4 breqtrdi M LMod V W V B F S V finSupp 0 ˙ F finSupp 0 R F
47 2 3 scmfsupp M LMod V 𝒫 Base M F S V finSupp 0 R F finSupp 0 M v V F v M v
48 5 19 44 46 47 syl211anc M LMod V W V B F S V finSupp 0 ˙ F finSupp 0 M v V F v M v
49 1 22 24 26 42 48 gsumcl M LMod V W V B F S V finSupp 0 ˙ F M v V F v M v B
50 21 49 eqeltrd M LMod V W V B F S V finSupp 0 ˙ F F linC M V B