| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lincfsuppcl.b |  | 
						
							| 2 |  | lincfsuppcl.r |  | 
						
							| 3 |  | lincfsuppcl.s |  | 
						
							| 4 |  | lincfsuppcl.0 |  | 
						
							| 5 |  | simp1 |  | 
						
							| 6 | 2 | fveq2i |  | 
						
							| 7 | 3 6 | eqtri |  | 
						
							| 8 | 7 | oveq1i |  | 
						
							| 9 | 8 | eleq2i |  | 
						
							| 10 | 9 | biimpi |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 11 | 3ad2ant3 |  | 
						
							| 13 |  | elpwg |  | 
						
							| 14 | 1 | a1i |  | 
						
							| 15 | 14 | eqcomd |  | 
						
							| 16 | 15 | sseq2d |  | 
						
							| 17 | 13 16 | bitr2d |  | 
						
							| 18 | 17 | biimpa |  | 
						
							| 19 | 18 | 3ad2ant2 |  | 
						
							| 20 |  | lincval |  | 
						
							| 21 | 5 12 19 20 | syl3anc |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | lmodcmn |  | 
						
							| 24 | 23 | 3ad2ant1 |  | 
						
							| 25 |  | simpl |  | 
						
							| 26 | 25 | 3ad2ant2 |  | 
						
							| 27 | 5 | adantr |  | 
						
							| 28 |  | elmapi |  | 
						
							| 29 |  | ffvelcdm |  | 
						
							| 30 | 29 | ex |  | 
						
							| 31 | 28 30 | syl |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 32 | 3ad2ant3 |  | 
						
							| 34 | 33 | imp |  | 
						
							| 35 |  | ssel |  | 
						
							| 36 | 35 | adantl |  | 
						
							| 37 | 36 | 3ad2ant2 |  | 
						
							| 38 | 37 | imp |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 1 2 39 3 | lmodvscl |  | 
						
							| 41 | 27 34 38 40 | syl3anc |  | 
						
							| 42 | 41 | fmpttd |  | 
						
							| 43 |  | simpl |  | 
						
							| 44 | 43 | 3ad2ant3 |  | 
						
							| 45 |  | simp3r |  | 
						
							| 46 | 45 4 | breqtrdi |  | 
						
							| 47 | 2 3 | scmfsupp |  | 
						
							| 48 | 5 19 44 46 47 | syl211anc |  | 
						
							| 49 | 1 22 24 26 42 48 | gsumcl |  | 
						
							| 50 | 21 49 | eqeltrd |  |